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Abstract

This dissertation applies reinforcement learning to the adaptive control of ac-
tive sensory-motor systems. Active sensory-motor systems, in addition to pro-
viding for overt action, also support act:ve, selective sensing of the environment.
The principal advantage of this active approach to perception is that the agent's
internal representation can be made highly task specific - thus, avoiding wasteful
sensory processing and the representation of irrelevant information. One unavoid-
able consequence of active perception is that improper control can lead to internal
states that confound functionally distinct states in the external world. This phe-
nomenon, called perceptual aliasing, is shown to destabilize existing reinforcement
learning algorithms with respect to optimal control.

To overcome these difficulties, an approach to adaptive control, called the
Consistent Representation (CR) method, is developed. This method is used to
construct systems that learn not only the overt actions needed to solve a task, but
also where to focus their attention in order to collect necessary sensory informa-
tion. The principle of the CR-method is to separate control into two stages: an
identification stage, followed by an overt stage. The identification stage generates
the task-specific internal representation that is used by the overt control stage.
Adaptive identification is accomplished by a technique that involves the detec-
tion and suppression of perceptually aliased internal states. Q-learning is used for
adaptive overt control.

The technique is then extended to include two cooperative learning mecha-
nisms, called Learning with an External Critic (LEC) and Learning By Watching
(LBW), respectively, which significantly improve learning. Cooperative mecha-
nisms exploit the presence of helpful agents in the environment to supply auxil-
lary sources of trial-and-error experience and to decrease the latency between the
execution and evaluation of an action.
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1 Introduction

For the better part of thirty years research in Al has focused on high level, cog-
nitive aspects of intelligence. Topics like planning, problem solving, natural lan-
guage understanding, knowledge representation, and reasoning have traditionally
been at the core of Al. However, abstract thought is only a part of intelligence and
is generally useless without sensors and effectors to ground it in the real world.
For these reasons an increasing number of researchers have begun to look at some
of the more mundane aspects of intelligent behavior that can be modeled with
complete behaving systems. More and more researchers are building robots that
act in the real world instead of complex systems that act in artificial, simulated, or
disembodied worlds. This shift has had two important effects. First, it has forced
the reexamination of basic assumptions that underlie traditional approaches to
intelligent behavior, and, second, it has led to research in areas that address the
shortcomings of traditional approaches.

Two topics that are currently generating a great deal of interest are active
perception and reinforcement learning. Active perception is concerned with devel-
opment of sensory systems that are dynamically controlled to selectively process
and represent precepts about the environment in a task-dependent way. Rein-
forcement learning is concerned with the adaptive control of an agent through the
use of scalar rewards (for feedback) and direct trial-and-error interaction with the
environment.

Active perception and reinforcement learning are both important to the de-
velopment of intelligent agents. Active perception is needed for efficient, realistic
perception, and reinforcement learning is important to the development of adap-
tive systems that, among other things, do not rely too heavily upon a priori
domain knowledge. To date, these two lines of research have, for the most part,
progressed independently.1 Work on active perception has focused primarily on

'Notable exceptions include the work described in this thesis [Whitehead and Ballard, 1990;
Whitehead and Ballard, 1991a], work by Tan on learning cost sensitive internal representa-
tions [Tan, 1991b; Tan, 1991a], Chapman and Kaelbling's work on the generalization problem
[Chapman and Kaelbling, 1991]. and Schmidhuber's work on learning to control visual attention



understanding the benefits of active vision, on developing approaches to active
vision, and on building systems that use it. Little concern has been focused on
how an agent might actually learn to control an active visual system. Similarly,
most work in reinforcement learning has ignored perceptual issues completely by
assuming that the agent at each time step has sensory inputs that completely
describe the state of the world with respect to the task.

1.1 Active Perception

The vast majority of work in AI has not dealt realistically with perception. Typ-
ically, perception is abstracted out of consideration in order to focus on more
central decision making issues. It is common to assume that a decoupled (often
implicit) sensory system provides the decision system with an internal represen-
tation that completely and accurately describes the state of the external world.
This representation frequently takes the form of a set of propositions that de-
scribe the relationships between, and the features of, every potentially relevant
object i- *'.e domain. Even for simple toy domains this reconstructive approach
to perception places an unrealistic burden on the sensory system and leads to
internal representations rife with irrelevant information. For example, in a real
world version of the blocks-world it is unrealistic to expect a sen3ory system to
analyze more than a few blocks at a time. Moreover, if there are n blockL in the
world and each is represented using traditional methods, then the size of the state
space is O(n!) [Ginsberg, 1989]. For n = 20 the state space has over forty billion
(42,949,672,940) states.

The large amount of information encoded in these representations is difficult
to deal with, but more importantly, most of it is irrelevant to the immediate
task facing the agent. It only interferes with decision making (and learning)
by clogging the system with irrelevant detail. The situation deteriorates even
further when we consider agents whose tasks are numerous, complex, and not
well understood ahead of time. Under these circumstances, complete internal
representations will necessarily have to encode even more information that is likely
to be even less useful at any given point in time. If intelligent robots are to be
achieved, then intelligent sensing strategies that balance generality and flexibility
with computational feasibility must be developed.

Active perception represents a promising approach to this challenge. The cen-
tral tenet of active perception is that an agent's sensory system is an information
collecting resource that is at least partially under the control of the agent's inter-
nal decision processes. By directly controlling the allocation of sensory processing
resources, the agent selectively monitors and represents those aspects of the world

[Schmidhuber, 1990a].
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that are immediately relevant to the task at hand and ignores what is irrelevant.
A key assumption is that at any given time only a relatively small amount of infor-
mation is needed for decision making. By exploiting this assumption, the amount
of compirtation required for sensing reflects the complexity of the agent's task and
not the complexity of the world in which it is embedded. Efficiency is attained
by carefully controlling the selection and application of computational resources
so that only relevant aspects of the environment are processed, thus generating
internal representations that are minimal in size and task-specific. Flexibility and
generality are attained by providing the system with a range of sensory processing
resources that can be flexibly applied to different parts of the environment. Ad-
ditional flexibility is gained when processing resources define primitive operations
that can be composed to define complex sensing routines [Ullman, 1984].

Human vision is a perfect example of active perception. We move our eyes
to allocate our visual processing resources (e.g., foveal vision) on those aspects of
the world that are most important to us. This point has been elegantly demon-
strated by Yarbus [Yarbus, 1967], who showed that a subject's eye movements
are task-dependent (i.e., see Figure 1). Yarbus' seminal experiments on hu-
man eye movements have been followed by considerable research in psychology
and artificial intelligence (not to mention physiology, anatomy, and neuroscience)
aimed at better understanding selective vision in man and machine. Some of
this research includes work analyzing the computational advantages of active
vision [Aloimonos et al., 1987; Ballard and Ozcandarli, 1988; Ballard, 1989a;
Ballard, 1991; Simmons, 1990; Tsotsos, 1987], work on architectures for vision and
visual sensing strategies [Agre, 1988; Bajcsy and Allen, 1984; Chapman, 1990b;
Chapman and Kaelbling, 1991; Chrisman and Simmons, 1991; Dickmanns, 1989;
Garvey, 1976; Rimey and Brown, 1990; Swain, 1990; Tan and Schlimmer, 1990;
Ullman, 1984; Romanycia, 1987; Romanycia, 1988] and aspects of active vision
in humans [Chapman, 1990a; Noton, 1970; Noton and Stark, 1971a; Noton and
Stark, 1971b; O'Regan and Levy-Schoen, 1983; Treismann and Gelade, 1980;
Ullman, 1984].

1.2 Reinforcement Learning

An assumption that is almost universal in Al is that the agent has an a priori
domain model which it uses to reason about possible courses of action. These
models are essential to traditional planning approaches since they are required
for search and plan generation. In most cases, the model takes the form of a
set of individual operator models [Fikes and Nilsson, 1971; Laird et al., 1986] or
a set of frame axioms [Hayes, 1973; McCarthy, 1977] that are used to predict
the effects of actions. It :, also common to assume that the model is complete,

3
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Figure 1.1: (reproduced from [Yarbus 1967]) A reproduction of I. E. Repin's
painting "An Unexpected Visitor" and records of seven eye movement traces for
the same subject. Each record lasted 3 minutes. The subject examined the
reproduction with both eyes. 1) Free examination of the picture. Before the
subsequent recording sessions, the subject was asked to: 2) estimate the material
circumstances of the family in the picture; 3) give the ages of the people; 4) surmise
what the family had been doing before the arrival of the "unexpected visitor"; 5)
remember the clothes worn by the people; 6) remember the position of the people
and objects in the room; 7) estimate how long the "unexpected visitor" had been
away from the family.
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accurate and stationary. Unfortunately for real-world tasks, models that satisfy
these assumptions are hard to come by for the following reasons:

1. The task domain may not be well enough understood to formulate an accu-
rate a priori model. In some cases it may be that the task is too complex
or the domain too unconstrained. In other cases, it may be that the task to
be performed cannot be anticipated in advance (e.g., as might be the case
for a general purpose robot that gets trained ofi site or whose tasks change
over time).

2. Even when the task domain is well known, it is often difficult to formulate
a model that is accurate and complete. This is especially true of real-world
tasks [Shafer, 1990] and when using symbolic models [McCarthy and Hayes,
1969; Hayes, 1973].

3. Most classical planning techniques depend on the world being deterministic.
This assumption makes it difficult to apply classical techniques to problems
that are inherently stochastic and makes classical planning unlikely for the
real world, where unexpected events are commonplace. 2

4. The real world is constantly changing. Tools wear out, parts break, objects
get moved. The real world is non-stationary, and fixed a priori models of
it are going to be inadequate. An agent's model must be adaptable so that
it can capture these changes. Most symbolic models are far too fragile and
inexpressive to afford incremental adaptation.

Computational models of intelligent control must not depend too heavily upon
complete and accurate a priori domain models. If control depends upon an explicit
model at all, it must suffice for it to be incomplete and inaccurate. If domain
knowledge is available, then the agent should be capable of exploiting it, but it
should not be a prerequisite for intelligent control.

Reinforcement learning offers an alternative approach to control that does not
depend upon explicit, a priori domain models [Minsky, 1954; Michie and Cham-
bers, 1968; Barto et al., 1983; Holland et al., 1986; Sutton, 1988; Watkins, 1989].
A reinforcement learning system is any system that through direct interaction with
its environment improves its performance by receiving feedback in the form of a
scalar reward (or penalty) that is commensurate with the appropriateness of its
response. By improves its performance we mean that the agent uses the feedlf-.Ick
to adapt its behavior in an effort to maximize some measure of the reward it re-
ceives in the future. Intuitively, a reinforcement learning system can be viewed as

2Recently, interest in p:.,oabilistic reason'ng and planning has been on the rise (e.g., see
[Pearl, 1988, Dean and Wellman, 1991].) Unfortunately, the shift towards probabilistic models
seems only to have increased the computational complexity of classical planning methods.
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a hedonistic automaton whose sole objective is to maximize the positive (reward)
and minimize the negative (penalty).

The principles of reinforcement learning are pertinent to intelligent control
since they lead to systems that do not depend upon a priori knowledge for decision
making. Instead of using an explicit domain model to generate a sequence of
actions (a plan) which is then executed open loop as in classical planning, a
reinforcement learning system maintains an explicit policy function (analogous
to a universal plan [Schoppers, 1989b; Schoppers, 1989a]) that maps situations
directly into actions. In this case, at each point in time decision making reduces
to computing (looking up) the value of the policy function for the current situation.
If the agent's policy is correct, then its performance is optimal. If it is not, then
the policy is incrementally improved through direct experience with the world.
By relying on the world directly for feedback (reinforcement) these systems avoid
many of the pitfalls associated with model-based control methods.3

Agents based on reinforcement learning confer a number of other advantages
as well. First, reinforcement learning systems are both situated and reactive:
they can respond quickly to unexpected contingencies and opportunities [Agre,
1988]. There is some confusion in the literature about the distinction between
situated and reactive. Situatedness and reactiveness are two distinct properties.
Both are required for intelligent behavior. An agent is situated if its control
decision is based on the immediate situation (as determined by sensor readings
and possibly a limited amount of internal state); an agent is reactive if it gener-
ais actions/behavior at a rate that is commensurate with the dynamics of the
environment in which it is embedded. Reinforcement learning systems are sit-
uated since decision making is usually based on the immediate situation. They
are reactive since decision making consists of evaluating a policy function, which
typically requires a small constant amount of time. Second, since reinforcement
learning systems incrementally adapt their policies based on experience accu-
mulated over time, they are effective for control tasks that are stochastic and
(under appropriate conditions) non-stationary. Also, reinforcement learning sys-
tems can exploit domain knowledge when it is available. This can be achieved
by 1) using a priori knowledge to determine a good initial policy [Franklin,
1988], 2) using a domain model to perform hypothetical experiments instead
of relying solely on trial-and-error experiments in the world [Whitehead, 1989;

'A fundamental assumption implicit in reinforcement learning is that an agent over the
course of its lifetime is presented with the same set of problems over and over [Agre, 1985]. The
solutions to these problems are encoded directly in the policy function. Once a solution to a
particular problem is learned (encoded in the policy), future occurrences of the problem can be
solved by simply following the instructions encoded in the policy - no planning or reasoning is
required. A new problem (i.e., one which cannot be reduced to a previously learned problem) or
a change in an existing problem will initially lead to degraded performance because the policy
will not encode a solution. In this case reasoning/problem solving may be used, or the system
can learn the task by trial-and-error experimentation in the environment.



Sutton, 1990a; Lin, 1990], and 3) using a model to generalize the results of ex-
periments for better credit assignments [Yee et al., 19901. Also, because learn-
ing is incremental, these models need not be complete or accurate. This ro-
bustness in the face of incomplete models has led to systems that profit by us-
ing models which themselves have been learned [Sutton, 1990a; Sutton, 1990b;
Lin, 1990].

The idea of using rewards and penalties as feedback for adaptive systems
dates back at least to the late fifties and Marvin Minsky [Minsky, 1954], who
studied automata that learned to solve a series of sequential decision problems
(maze problems) by adjusting their decision rules based upon the receipt of re-
wards and penalties. Since that time, reinforcement learning has been studied
widely and from a variety of perspectives. Some highlights include Minsky's early
maze learning automata [Minsky, 1954]; Samuel's checker player [Samuel, 1963];
Michie and Chambers' 'boxes' algorithm [Michie and Chambers, 1968]; Holland's
classifier systems and the bucket brigade algorithm [Holland and Reitman, 1978;
Holland et al., 1986]; Sutton's Adaptive Heuristic Critic [Sutton, 1984; Barto
et ul., 1983], its neural implementation [Anderson, 1986], and, subsequently, Sut-
ton's Theory of Temporal Difference Methods [Sutton, 1988]. More recently, the
relationship between reinforcement iearning and dynamic programming has been
established [Watkins, 1989; Werbos, 1987] and a mathematical theory of reinforce-
ment learning is beginning to emerge (e.g., see [Barto et al., 1991]). Other recent
results address issues such as modularity [Booker, 1988; Riolo, 1988; Mahade-
van and Connell, 1991; Singh, 1991; Wixson, 1991], integration of planning, ac-
tion, and learning [Whitehead and Ballard, 1989a; Whitehead and Ballard, 1989b;
Whitehead, 1989; Sutton, 1990a; Sutton, 1990b; Sutton, 1991; Lin, 1990], faster
credit assignment [Yee et al., 1990; Lin, 1991; Whitehead, 1991], statistical founda-
tions for better exploration strategies [Kaelbling, 1990], selective perception and
generalization [Whitehead and Ballard, 1991a; Chapman and Kaelbling, 1991;
Tan, 1991a], and neural implementations [Williams, 1987; Schmidhuber, 1990b].

1.3 Principal Contributions

This dissertation examines architectures that combine both active sensory systems
(for feasible, task-dependent perception) and reinforcement learning (for adaptive,
non-model-based control). It is shown that incorporating active perception and
reinforcement learning into a single system is non-trivial because of subtle inter-
actions that prevent the system from learning an adequate control policy. What
makes learning in this context difficult is that, in addition to learning the overt
actions needed to solve a problem, the agent must also discover how to control its
sensory system (e.g.. focus its attention) n order to represent accurately the state
of the world with respect to the task. If the agent selectively attends to the few

7



key objects relevant to the task, then its internal state accurately represents th(.
world. If, however, the agent does not attend to those key objects, the internal
state may say nothing useful about the world. A dilemma arises: in order for the
agent to learn to solve a task, it must accurately represent the world with re:'pect
to the task; but, in order for the agent to learn an accurate representation, it must
in some sense know how to solve the task.

The difficulty arises when the sensory system, due to improper control, gener-
ates an internal state that represents two or more functionally different situations
in the external world. These internal states are said to be inconsistent and this
undesirable overloading of internal states is called perceptual aliasing. Perceptual
aliasing is shown to interfere severely with most existing reinforcement learning
algorithms by making it impossible, in certain situations, to estimate accurately
the utility of performing an action. Perceptual aliasing is a fundamental obstacle
to adaptive intelligent control since it not only arises in active perception but is
also inherent in virtually every abstraction and generalization mechanism - that
is, perceptual aliasing can occur any time it is possible to ignore information that
is relevant to decision making and utility estimation.

To surmount the problems caused by perceptual aliasing an adaptive control
technique, called the Consistent Representation (CR) method, is developed. In
the CR-method control is accomplished in two distinct phases: a state identi-
fication phase, followed by an overt control phase. During state identification,
the system executes sensory-control actions in an attempt to generate an inter-
nal representation that accurately identifies the state of the external world with
respect to the task. Next, during overt control, this internal representation is
used to generate the overt actions needed to perform the task. Both the state
identification and the overt control stages are adaptive. Learning in the overt
control stage is based primarily on standard reinforcement learning techniques -
that is, an overt control policy is adjusted to maximize expected future rewards.
Learning for state identification is somewhat different. The objective of state
identification is to generate inlernal states that are somehow adequate. In the
CR-method, adequacy is defined in terms of whether or not an internal state is
consistent. By detecting internal states that are inconsistent, the identification
procedure used by the sensory controller can be adapted and inconsistent states
can be eliminated. When this is achieved the sensory controller has learned to
generate a task-dependent internal representation. In the CR-method, perceptual
and overt control is learned incrementally and simultaneously. This follows since
the overt control policy cannot be completely learned until some of a consistent
internal representation is well established, while perceptual control cannot be ac-
complished until the overt controller learns, at least partially, how to solve the
task. This interaction results in systems that first learn to represent and solve
easy instances of a task (e.g., the last few steps of a task), and then, through
a bootstrapping process, learn to solve more and more difficult instances. The

8



CR-method is demonstrated on a robot that learns a simple block manipulation
task that requires the control of an active sensory-motor system.

Reinforcement learning systems are plagued by unstructured initial search.
In particular, when rewards and punishments are rare, an agent may execute
a long sequence of actions before it receives feedback essential for learning. If
the agent knows little or nothing about the task a priori, then during the initial
phases of learning lack of feedback can lead to long random walks in search of
rewards. As the size and complexity of the state space is scaled these random
walks quickly become prohibitive. We define cooperative mechanisms that help
reduce search by providing the agent with shorter latency feedback and auxiliary
sources of experience. The principal motivation for cooperative mechanisms is
that, in nature, intelligent agents do not exist in isolation, but are embedded in a
benevolent society that guides and structures learning. Humans learn by watching
others, by being told, and by receiving criticism and encouragement. Learning
more often involves knowledge transfer than discovery. Similarly, intelligent robots
cannot be expected to learn complex tasks in isolation by trial-and-error alone.
Instead, they must be embedded in cooperative environments, and algorithms
must be developed to facilitate the transfer of knowledge among them.

In this work, two cooperative learning techniques are proposed and demon-
strated. The first, called Learning with an External Critic ( LEC), is based on
the idea of a mentor, who watches the agent and generates immediate rewards
in response to the agent's most recent actions. This reward is used to bias tem-
porarily the agent's control strategy. The second algorithm, called Learning By
Watching (LBW) is based on the idea that an agent can gain valuable experiences
vicariously by relating the observed experiences of others to its own. These two
algorithms are demonstrated in the block stacking domain and shown to improve
the learning rate substantially. Also, the search time complexity for these algo-
rithms, along with a popular reinforcement learning algorithm, is analyzed for
a restricted (but representative) set of learning tasks. The results indicate that
under certain circumstances a popular algorithm (Q-learning) can be expected to
require time at least exponential in the size of the state space, while the LEC and
LBW algorithms require time at most linear in the size of the state space, and
under appropriate conditions may only require time proportional to the length of
the optimal solution path. While these analytic results apply only to a restricted
class of tasks, they shed light on the complexity of search in reinforcement learning
in general and the value of these cooperative mechanisms for reducing search.

1.4 Thesis Outline

The technical results described in this dissertation were obtained by analyzing
a series of systems developed to solve tasks in a simple simulated blocks world
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domain. Even though this domain is quite simple, these systems proved useful for
developing my intuition. For this reason, the dissertation chronicles the evolution
of these systems, collectively called Meliora. I begin by describing the first system
built, which took a most straightforward approach and failed miserably; then, after
analyzing its failure, I describe a system based on the CR-method, which succeeds
in learning the task but is slow; following that, I demonstrate the potential of
cooperative mechanisms. Grounding the discussion in the blocks world makes
exposition easier and an intuitive understanding more likely. At various points in
the discussion the results are generalized in a more formal theory.

The remainder of the dissertation is organized as follows. Chapters 2 and 3
review background material from the areas of active perception and reinforcement
learning, respectively, Tle emphases in these chapters are on visual routines and
deictic sensory-motor systems (for active vision) and Q-learning (for reinforcement
learning) since these are the techniques used by the block stacking systems. Read-
ers familiar with active perception, Markov decision processes, and Q-learning may
wish to quickly skim Chapters 2 and 3 or skip directly to Chapter 4, Chapter 4 de-
scribes the block stacking task. This discussion includes a description of the deictic
sensory-motor used by all the robots. A formal model for describing agents that
integrate active perception and reinforcement learning is also developed. Chapter
5 describes experiences with the first block stacking agent, analyzes its failure and
formalizes the interactions caused by perceptual aliasing. Chapter 6 describes
a specific algorithm developed to overcome the effects of perceptual aliasing for
the block stacking task. Generalizing this algorithm leads to the CR-method. In
Chapter 7 we focus on cooperative mechanisms for improving the learning rate.
This chapter describes the principles of LEO and LBW, demonstrates them in
several block stacking systems, and presents a formal analysis of the search time
complexity of these algorithms. Chapter 8 discusses the limitations of the CR-
method and identifies areas for future research. Conclusions are drawn in Chapter
9.
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2 Background: Active
Perception

This chapter and the next review essential background material needed to moti-
vate and understand the work described in this dissertation. This chapter focuses
on active perception and Chapter 3 focuses on reinforcement learning. These
chapters are not intended to be thorough reviews of research in active perception
or reinforcement learning. Rather, the emphasis is on reviewing specific ideas that
form the conceptual foundation on which our work is based. With respect to active
perception, we focus on Ullman's Visual Routines model of human intermediate
level vision [Ullman, 1984] and on Agre and Chapman's theory of deictic represen-
tations [Agre and Chapman, 1987; Agre, 1988; Chapman, 1990b]. With respect
to reinforcement learning, we focus on Watkins' Q-learning algorithm [Watkins,
1989].

2.1 Principles of Active Perception

The purpose of a sensory system should be to provide the agent's internal decision
processes with enough information to make effective control decisions. Whether
or not a robot's sensors provide it with adequate information depends upon the
task being performed and the capabilities of the robot's internal decision system.
In any case, an important decision in the design of a robot is the choice of the
aspects of the environment to sense at any given point in time. The most common
approach taken in Al is to adopt a fixed sensory system that continually monitors
all potentially relevant f-iatures of the environment. In classical planning, this
approach is implicit in the objective representations that at each point in time
Wumpletely describe the state of the world (e.g., [Fikes et al., 1972; Sacerdoti,
19771'. In behavioral based approaches, it is common to allocate (or assume
th- existence of) se:isory processes that continually monitor all relevant sensory
attributes (e.g., [Brooks, 1986; Kaelbling, 1987]). While this approach may be
appropriate for relatively simple tasks, where the number of relevant attributes is
small and ,,.ell known, it fails to scale to more complex tasks.



In particular, as the number, complexity, and diversity of tasks performed by
a robot increase, the number of potentially relevant features needed for decision
making explodes, and it quickly becomes impossible to monitor continually every
attribute that is potentially relevant. The problem is exacerbated when the task
to be performed is not well understood ahead of time, since in this case the set of
potentially relevant attributes is potentially unbounded.

Under these circumstances an active approach to perception is more appro-
priate. The principal idea of active perception is to control the allocation of
sensory processing resources in order to analyze selectively only those aspects of
the environment that are actually relevant to the immediate decision at hand.
Following this approach, generality is attained by using a powerful set of sensory
processing resources that can be flexibly applied to different parts of the environ-
ment and combined to define complex perceptual functions, Efficiency is attained
by selectively applying these resources only as needed to satisfy the immediate
information requirements of the internal decision system.

With respect to task performance, the idea is that as the robot progresses
through different stages of a task or proceeds from one task to another, the chang-
ing information needs of the robot are tracked by actively controlling the compu-
tations performed by the sensory system. The degree to which the set of relevant
features changes over time depends largely on the range of tasks being performed,
their complexity, and the capabilities of the internal decision system to maintain
internal state (or memories). For instance, a robot that performs two very similar
tasks may find that, to a large degree, both tasks share the same set of relevant
features, whereas a robot that performs two dissimilar tasks may find that the
relevant features for the two tasks are nearly disjoint. For complex tasks, changes
in relevant information may accompany transitions between stages of. the task.
The amount of context (or memory) maintained by a robot also determines the
dynamics of systems information requirements. A robot that maintains informa-
tion about its previous states may only need to verify that its most recent action
had the intended effect, whereas a memoryless robot may need to use its sensors
to reestablish context at each point in time.

With respect to learning, active perception provides a flexible means for sam-
pling and monitoring a tremendous range of potentially relevant features (needed
during learning), while it also provides for the efficient generation of task-dependent
internal representations once the relevant sensory information has been discovered.

The key assumption exploited by the active perception paradigm is that at any
point in time the number of features actually relevant to an agent's immediate
decision is relatively small, even though the set of features that are potentially
relevant (or relevant at some other point in time) may be large. This assumption
appears to become universally valid as the number, complexity, and diversity of
tasks to be learned and performed by an agent increase.
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2.2 Visual Routines

In 1984, Shimon Ullman [Ullman, 1984] proposed an abstract computational
model of human intermediate level vision. The model was developed to explain
how the perception of spatial properties and relationships that are complex from a
computational standpoint nevertheless often appear deceivingly immediate and ef-
fortless for humans. The distinguishing feature of Ullman's model is that complex
spatial analysis is performed by a set of sequential processes called visual routines.
With the visual routines model, Ullman made several important contributions to
the study of visual perception:

1. He argued for active, top-down control and the selective application of visual
processing resources, a significant departure from many of his contempo-
raries, as the prevailing dogma emphasized bottom-up scene reconstruction.

2. He recognized that many abstract spatial properties and relations have a
certain amount of essential sequentiality and are often best described (and
perceived) using sequential algorithms.

3. He argued that if properly chosen, a fixed set of basic visual operations
could be assembled to extract an unbounded variety of shape properties
and spatial relations, and that sharing these operations could yield visual
processing systems that were both efficient and tremendously versatile.

4. He proposed a plausible set of basic operations and demonstrated their util-
ity on a number of difficult spatial reasoning tasks.

2.2.1 Model Overview

In the visual routines model, the computation of spatial relations is divided into
two stages. The first stage involves the bottom-up creation of low level base
representations. The second stage involve the application of visual routines to the
base representations to extract useful spatial properties.

The base representations are derived strictly bottom up. They are assumed to
be spatially uniform, viewer centered, and unarticulated. Examples of plausible
base representations include the primal sketch and the 21-D sketch as described by
Marr [Marr, 1976; Marr and Nishihara, 1978]. Local information, such as depth,
color, edge orientation, curvature, motion, and texture, is represented in the base
representations.

The second stage of processing involves the application of visual routines to
the base representations. The particular visual routine applied in a given situ-
ation is task-dependent and determined by the information needs of the higher
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level (decision making) components of the system. Indeed, Ullman suggests that
visual processing be viewed as a query-answering process. Following this view,
higher level decision making components posit queries to the visual system. These
queries get translated into visual routines which are applied to the base represen-
tations. The results of this processing are then made available to the higher
level components via a central representation, a functional analog to the internal
representations of classical planning.

The processing stages of the visual routine model are depicted in Figure 2.1.
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High Level Components
(e.g., a decision system)

Control I 3
Information 

COr::a

I Visual Routine Processor

Low Level Visual Processing
(low level, local, bottom up)

Figure 2.1: The processing stages of the visual routines model. The base rep-
resentation is generated by low-level, local visual processes; visual routines are
applied to the base representation, as determined by top-down feedback from
higher level components. The results of visual routine processing are placed in a
central representation for use by higher level decision-making components. Inter-
mediate results may also be stored in an incremental representation and used for
later processing.
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2.2.2 Operations

Visual routines are sequential programs composed from a fixed set of basic oper-
ations. These operations are assumed to be implemented in hardware and shared
between routines. Ullman has suggested a set of possible operations, based on
their potential usefulness, and demonstrated their utility on a number of examples.
These operations include: shift of processing focus, indexing to an odd-man-out
location, bounded spreading of activation, boundary tracing, and marking. Follow-
ing is a brief description of each of these operations (as taken almost verbatim
from [Ullman, 1984] p. 155).

Shift of the processing focus. This is a family of operations that allow
the application of the same basic operation to different locations across
the base representation.

Indexing. This is a shift operation towards special odd-man-out loca-
tions. A location can be indexed if it is sufficiently different from its
surroundings in an indexable property. Indexable properties include
contrast, orientation, color motion, and perhaps also size, binocular
disparity, curvature, and the existence of terminators, corners, and
intersections.

Bounded activation. This operation consists of the spreading of activa-
tion over a surface in the base representation, emanating from a given
location or contour and stopping at discontinuity boundaries. This is
not a simple operation, since it must cope with difficult problems of
noise, spurious internal contours, and fragmented boundaries.

Boundary tracing. This operation consists of either the tracing of a
single contour or the simultaneous activation of a number of contours.
The operation must be able to cope with the difficulties raised by
the tracing of incomplete boundaries, tracing across intersections and
branching points, and tracing contours defined at different resolution
scales.

Marking., The operation of marking a location means that this location
is remembered, and processing can return to it whenever necessary.
Such operations are useful in the integration of information in the
processing of different parts of a complete scene.

2.2.3 Examples

The utilitx of visual routines and the plausibility of the above operations can be
demonstrated by considering a number of visual tasks. Three tasks examined by
Ulhnan are shown in Figures 2.2-2.4. Figure 2.2 shows several examples of the
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inside-outside task. In this case, the objective is to determine visually if the X
is contained by a closed curve. A visual routine for computing the inside-outside
relation, based on "region coloring," proceeds as follows:

1. Move the processing focus to the X location.

2. Begin a bounded activation at X until no further spreading occurs.

3. If the activation fails to reach the edge of the visual field, then report that
X is contained by a closed curve.

Another spatial reasoning task that is amenable to visual routines but difficult
for classical pattern recognition techniques, is to determine whether or not two
X's fall on the same curve (see Figure 2.3). A visual routine for establishing this
property follows:

1. Move the processing focus to an unmarked X and mark the location.

2. If the X does not lie on a curve, then go to Step 1.

3. Trace along the contour until another X is encountered or the curve has
been completely scanned.

4. If a second X is encountered along the contour in Step 3, then terminate
and report. success; otherwise, if unmarked X's still exist, go to Step 1; else
terminate and report failure.

Interestingly, when human subjects perform this task, they report their per-
ceptions as immediate and effortless when in fact reaction time experiments show
that the time needed to perform such tasks monotonically increase (nearly lin-
early) with the distance traced along the contour [Ullman, 1984]. This is consis-
tent with the tracing routine given above and suggests that, although unconscious
of it, people probably use a sequential algorithm that includes a contour tracing
operation.

A third example of a visual task is to identify a subfigure in a scene despite the
presence of confounding figures in close proximity to its contours (see Figure 2.4).
This task is representative of recognition problems found in natural scenes where
cluttered backgrounds are common. The task can be accomplished by using a
bounded activation process to segment the shape, followed by a shape analysis
procedure.
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a) b) C)

Figure 2.2: Examples of the inside-outside task (after [Ullman, 1984] p. 100).
Two simple instances of the inside-outside task are shown in (a) and (b). A more
difficult instance is shown in (c).



Figure 2.3: The objective of this task is the determine whether or not two X's lie
on the same curve. Although human subjects report their perception of this prop-
erty as immediate and effortless, reaction time experiments implicate a contour
tracing operation in their computation.
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Figure 2.4: The objective of this task is to identify the subfigure containing the
X despite the presence of confounding figures in close proximity to its contours.
The key to this task is to segment the subfigure from the cluttered background.
This can be accomplished by shifting the processing focus to the X and initiating
a bounded spreading of activation (after [Ullman, 1984] p. 136).
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2.2.4 Indexing

There are two essential forms of selectivity in the visual routines model: routine
selection and indexing. Routine selection is the process of constructing and se-
lecting the visual routines to be applied at a given point in time. Other than to
associate it with higher level components of the system, algorithms for routine
selection are not specified by the model. Indexing is the process of determining
where in the base representation to apply a visual routine.

Examination of the above visual routines shows that processing does not occur
in parallel over the entire base representation, but tends to be localized in specific,
relevant regions. For instance, the algorithm for finding two X's on a common
contour begins by focusing processing at locations occupied by an X. These
locations in the base representation act as "anchor points" for the routine and
establish context-dependent referents used by the visual routine.

In the visual routines model, indexing is accomplished in three stages. In the
first stage, a set of indexical properties are computed in parallel over the entire base
representation. These indexical properties are assumed to be locally computable
features such as motion, color, orientation, and curvature. In the second stage,
an odd-man-out operation is performed to detect locations that are significantly
different from their surroundings. This salience operation is mediated by selecting
specific indexical properties to be emphasized, or satisfied by the chosen anchor
point. In the last stage, the processing focus is shifted to the most salient location.

A cornerstone of the active vision paradigm in general, and the visual routines
model in particular, is the idea of limiting the application of visual processing
resources to only those spatial locations that are functionally relevant. From
a computational standpoint, the viability of this idea hinges on being able to
quickly identify functionally relevant locations in the base representation. An
important assumption made by the visual routines model is that in most cases
locally computable features can be used to quickly identify these functionally rel-
evant regions. Whether or not this assumption stands up in practice remains
to be seen. However, it appears that in many cases local properties can indeed
be used to differentiate relevant locations from the background. From a psycho-
logical standpoint, considerable evidence exists to suggest that the human visual
system employs some indexing mechanisms based on locally computable features
[Treismann and Gelade, 1980; Julesz, 1981]. Recent work by Swain, Ballard,
and Wixson has also demonstrated the utility of locally computable properties
based on color for indexing in an active computer vision system [Swain, 1990;
Wixson. 1990: Wixson and Ballard, 1991].
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2.2.5 Summary of the Visual Routines Model

The human visual system has an uncanny ability to perform, with surprising ease,
spatial analysis tasks that from a computational standpoint are quite sophisti-
cated. Few computational models are capable of explaining such sophisticated
processes. Ullman's visual routine model represents a significant advance in this
regard. It has also contributed to the recent shift in computational vision away
from scene reconstruction and towards active, task-oriented perception.

The key features of the Visual Routines Model follow ([Ullman, 1984] p. 108):
1. Spatial properties and relationships are established by the application of

visual routines to a set of early visual representations.

2. Visual routines are assembled from a fixed set of elemental operations.

3. New routines are assembled to meet newly specified processing goals.

4. Different routines share elemental operations.

5. A routine can be applied to different spatial locations. The processes that
perform the same routine at different locations are not independent.

6. Mechanisms are provided for sequencing elemental operations and for se-
lecting locations to apply routines.

2.3 Deictic Representations

One area that Ullman's visual routines model does not address in detail is the
interface between the visual routine processor and higher level control components
of the system. In particular, Ullman's model does not answer these questions:
What information should be encoded in the internal representations of the higher
level components? or How do the higher level components control the construction
and application of visual routines?

Agre and Chapman have proposed one answer to the question of the content
of the central representation in their theory of deictic representations [Agre and
Chapman, 1987; Agre, 19,%; Chapman, 1990b]. The key observation exploited in
this theory is that for any particular task (or activity) there is usually, at any given
point in time, a relatively small number of objects that are immediately relevant
to the agent's behavior. Instead of attempting to represent each and every object
in the domain objectively (as is common in traditional representational schemes),
deictic representations aim to monitor and represent actively only those few key
objects that are immediately relevant to the ongoing activity. In a deictic repre-
sentation, if some aspect of the world is not significant to the agent's immediate

22



activity it is ignored. This task-oriented approach to representation has the ad-
vantages that 1) it significantly reduces the computational burden placed on the
sensory system and 2) it affords a kind of "passive abstraction" [Agre, 1988] that
greatly facilitates decision-making by collapsing the infinite complexity of the real
world onto much smaller task-specific internal representations.

2.3.1 Entities and Aspects

In a deictic representation, it is assumed that a task (or activity) can be de-
scribed abstractly in terms of continuous interactions with, and manipulations
of, abstract functional objects called indexical functional entities. That is, it is
assumed that knowledge of relevant features and relationships of these few key
entities is sufficient to determine the behavior of an agent. These abstract prop-
erties and relationships are called indexical functional aspects and they comprise
the agent's internal representation.

A simplistic (but intuitive) way to think about entities is to view them as
functional roles that must be instantiated by objects in the world in the course
of actually performing a particular task. That is, when an agent actually engages
in an activity, entities get bound to specific objects in the world, and the actual
behavior of the agent (in a particular instantiation of an activity) is determined
by the actual properties and relationships (aspects) of these bound objects. At
any given point in time, an entity is associated with at most one object in the real
world. However, over the course of time, in various instantiations of an activity or
in different stages of an activity, an entity may bind many different objects. The
point is that entities correspond to functional roles in an activity, which may be
played by a wide range of objects, depending upon the particular circumstances
in the external world. In this discussion, we focus on indexical functional entities
that represent physical objects in the external world. These simple entities are
analogous to natural kinds (or simple nouns) used in linguistics. However, just
as there are nouns to describe complex, abstract concepts, sr too can complex
indexical functional entities be defined to represent them.

Aspects describe important properties of entities. These may include rela-
tively simple features, such as color, texture, orientation, and position in space,
or arbitrarily complex properties and relationships such as shape, relative size,
inside-outside relationships, overlap, alignment, distance, or just about any con-
dition imaginable. In addition to determining the overall state of the agent with
respect to a task, aspects are also useful for instantiating specific motor com-
mands. For instance, the position of an entity relative to the agent's body may
be used to establish the reference frame used during reaching [Ballard, 1989b].
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2.3.2 Implementing Deictic Representations

In general, in a deictic representation, there are many ways to establish bindings
between entities and aspects in the agent's internal representation and specific
objects and properties in the external physical world. For instance, the binding
between an entity such as the-cup-from-which-I-am-drinking and a physical object
(say the actual cup I am drinking from) can be established through visual cues
(e.g., visual fixation), through haptic cues (e.g., grasping it with one's hand), or
even through memory (e.g., by remembering the values of aspects/properties that
characterize it).

It is also important to point out that, it is not necessary for the agent to con-
tinually maintain every object-entity binding associated with a specific activity.
Bindings may be dynamic and may depend upon the status of the agent's ongoing
activity and upon conditions in the world. In general, what is required between
an object and an entity is that the agent maintain a causal relationship between
the two so that when the time comes to establish/exploit the binding, it can be
made. Such causal relationships can be maintained through behavioral conven-
tions, habits, policies, laws, juxtapositions, etc. See Chapter 7 of [Agre, ming) for
a complete discussion.

For the purposes of this dissertation, we restrict ourselves to simple cases
where entities are always simple (i.e., bound to physical objects in the external
world) and vision alone is used to establish object-entity bindings. In the visual
systems described in [Agre, 1988; Chapman, 1990b], an object is bound to entity
using a mechanism known as a marker. Markers are best thought of as pointers
implemented by the visual system and are quite similar to the "processing foci"
describe in Ullman's model. A marker can be bound to only one object at a time
and it is assumed that the sensory-motor system maintains the marker's binding
at all times. Changing a marker's binding is accomplished by executing explicit
actions specifically targeted for that marker. These actions index target objects
in the world according to specific indexical properties that distinguish them from
other objects, as in Ullman's model.

It is important for an agent to establish object-entity bindings as quickly and
efficiently as possible. To facilitate binding, each entity has associated with it a
set of indexical properties/routines that are used to guide the search for candidate
objects. Once a candidate object has been identified, additional aspects can be
computed using more complex visual routines to determine whether or not it
meets the functional constraints of the entity.

2.3.3 Control

As in Ullman's model, Agre and Chapman's theory assumes that higher level
(decision) components control the selection of visual routines and, consequently,
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the generation of the agent's internal representation. In the systems they imple-
mented, the higher level decision components were hand-crafted combinational
circuits, and other than to emphasize the need for continuous interaction between
perception and control, no formal theory of high level control was provided.

2.3.4 Instantiations of the Theory

Agre and Chapman wrote a pair of programs that, among other things, demon-
strated the utility of the visual routines model and of deictic representations
in complete behaving systems[Agre and Chapman, 1987; Agre, 1988; Chapman,
1990b]. The programs play two different video games. The first program, called
Pengi, plays Pengo; and the second program, called Sonja, plays Amazon. I'll
focus on Pengi.

Pengo is an interactive video game in which a penguin moves around in a
maze of ice blocks that is also occupied by bees. The player (Pengi) controls the
penguin's movements with a joystick while the bees fly around semi-randomly.
The penguin can be stung and killed by bees that get too close. Also, the penguin
and bees can modify the maze by kicking ice blocks to make them slide. If a block
slides into a bee or the penguin it dies. Figure 2.5 shows a snapshot of a Pengo
game in progress. In the figure, the penguin can be found in the middle left part
of the screen.

In Pengi, entities and aspects are used to identify ice cubes and bees (and other
things like corridors and openings) that are relevant to the player's behavior.
At various times during play, Pengi's internal representation monitors different
entities and aspects, depending upon the particular activity engaging Pengi. Some
of the entities that Pengi keeps track of at various times during the game are:

the-ice-cube-I-am-kicking,
the-bee-I-am-chasing,
the-bee-on-the-other-side-of-this-ice-cube-next-to-me,
the-ice-cube-that-the-ice- cube-I-just-kicked-will-collide-with.

Space does not permit a detailed discussion of the visual routines used to identify
these entities or compute their aspects. However, elegant discussions of the theory
of deictic representations and its realization in Pengi and Sonja can be found in
incarnations of Agre's and Chapman's doctoral dissertations, [Agre, 1988; Agre,
ming] and [Chapman, 1990b; Chapman and Kaelbling, 19911, respectively.
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Figure 2.5: A Pengo game in progress (from [Agre, 19881 p. 196).
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3 Background: Reinforcement
Learning

This chapter reviews some of the principles of reinforcement learning. The main
objective of the chapter is to review Watkins' Q-learning algorithm; however, we
would also like to establish some intuition into the workings Q-learning and relate
it to the mathematical foundations on which it is based. Therefore, we begin by
reviewing the Theory of Markov Decision Processes and the fundamentals of Dy-
namic Programming. We then show how Q-learning can be derived as a kind of
incremental, Monte Carlo version of the policy iteration algorithm of dynamic pro-
gramming. More thorough treatments of the Theory of Markov Decision Processes
and Dynamic Programming can be found in numerous good books (e.g., (Bellman,
1957; Ross, 1983; Bertsekas, 1987)) and an excellent account of Q-learning can be
found in Watkins' PhD dissertation [Watkins, 1989].

3.1 Markov Decision Processes

We are interested in agents that learn to perform tasks that require interactions
with the world over an extended period of time. These tasks require the agent to
use sensors to differentiate states of the world and to decide, depending upon the
situation, which action to take. Sometimes actions will achieve a desired end (or a
goal) but most of the time actions will be used to preserve some desired property
of the world or to set up opportunities to achieve goals in the future.

Markov decision processes provide a useful mathematical framework to de-
scribe these sequential decision tasks. In a Mzrkov decision process (also called
a controllable Markov chain) a control task is formally modeled by the tuple
(S, A, T, R). In this model, S is the set of possible states the world can occupy, A
is the set of possible actions the agent (or controller) can take, T is a transition
function that determines the effects of actions, and R is a reward/cost function
that associates payoffs and penalties with actions and states. In this dissertation
we will assume that the set of possible world states, S, and the set of available
actions, A, are discrete and finite.
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In a Markov decision process, time advances in unit duration quanta (t =
0,1,2,3,4, ...), where at each point in time the system occupies exactly one state 1

At each point in time, the agent selects and executes one action, which causes the
world to make a transition to a new state and results in the receipt of a reward
(or penalty). At any given time t,

Xt is the random variable denoting the state of the system,
xt is the actual state of the system,
R is the random variable denoting the reward received, (i.e.,

as a result of executing an action in state Xt),
rt is the actual reward received,
at is the action executed by the controller.

The effects of an action depend only upon the state in which it was performed.
This dependence is modeled by the transition function T, such that T(xt,at) =
Xt+,. For deterministic models, the mapping from state-action pairs to next
states is fixed and the transition function is a true function. However, in general
transitions are allowed to be probabilistic. In this case, the result returned by T
is a sample drawn from a probability distribution over S. In a Markov decision
process the probability distributions that govern the transition function depend
only upon the action and the state in which it was performed, and the transition
function is fully specified by a set of transition probabilities P,(a), where

Pv(a) = Pr(T(x,a) = y). (3.1)

Similarly, the reward function R determines the reward received as a result of
executing an action. It, too, is a probabilistic function of the current state-action
pair, thus, Rt = R(xt, at). While a set of probability distributions governing
the reward function could be defined for each state action pair, analogous to
the transition func' on, we are usually only concerned with the expected reward
obtained as a result of executing an action. Thus, we will assume instead that the
Markov Decision Process defines an expected reward with each state action pair,
which we write as

p(x,a) = E[R(x,a)]. (3.2)

This completes the formal definition of a Markov Decision Process.

3.1.1 The Markov Property

A key property of the Markov Decision Process model is that transitions and
rewards depend only upon the current state and the current action. That is not

'Actually, continuous time and continuous state Markov decision processes can be defined.
However, our discussion will restrict itself to discrete time and discrete state processes.
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to say that knowledge of the current state and current action is sufficient to predict
the reward and next state - transitions and rewards may be non-deterministic
- but that any information above and beyond knowledge of the current state
and current action is useless for making predictions. This is called the Markov
property. It is a very strong condition because it says that knowledge of the
current state-action pair captures the essence of the task and that any additional
knowledge of the world whatsoever has no impact on one's ability to predict the
outcome of executing the state-action pair.

It is important to point out that the Markov property is not an intrinsic
property of any physical process; rather it is a property of a mathematical model
of a physical process. Virtually any physical process can be modeled as a Markov
process if the state-space and control actions are chosen appropriately.

The Markov property is crucial when considering the effects of active percep-
tion on the decision problems faced by an agent's embedded control system. In
particular, if the state space is defined by the possible values of the agent's sensory
inputs and if the sensory system does not provide adequate information about the
state of the world, then the decision problem facing the agent's embedded con-
troller may not satisfy the Markov property. As we will see in Chapter 5 this
can be catastrophic since 1) it may lead to decision problems that have no fixed
optimal policy and 2) it may cause reinforcement learning algorithms to oscillate
from one policy to another, never converging on an optimal strategy.

3.1.2 The Objective of Control

Policies

Markov decision processes are also called Controllable Markov Processes because
one essential component of these models is a controller that, by choosing actions,
can influence (and in some cases directly control) the state space trajectory of the
world through time. One way to specify the behavior of the controller is with a
policy. A policy is a rule that determines the action to execute given the current
state. Formally, a policy f is a function from states to actions (f : S -* A), where
f(x) denotes the action to be executed in state x.

A policy is stationary if the mapping from states to actions is fixed. If the
function is probabilistic then the policy is said to be stochastic, otherwise it is
deterministic. Given a Markov decision process, the objective is to find (either
by direct computation or by learning) a deterministic, stationary policy that is in
some sense optimal.

Let us denote the probability that the process makes a transition from state
x to state y, given that '.he agent is following policy f, as

P (f). (33)
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Similarly, let us use

T(x, f), R(x, f), and p(x, f) (3.4)

to dencte the random variables for the next state, the reward and the expected
reward, respectively, whe~i following policy f in state x.

Returns

In the Theory of Markov decision processes, optimality is defined in terms of cu-
mulative reward received over time. That is, the goal of the agent is to implement
a control policy that on average maximizes some measure of the total reward to
be received in the future.

There are several possible measures of cumulative reward. One of the most
common is a measure based on a discounted sum of the total reward received over
time. This sum is called the return and for time t is defined as

00

rt = z "yrt+. (3.5)
n-O

where -f, called the discount factor, is a constant between 0 and 1. In this measure,
the discount factor is used to weight the importance of a reward as a function of
its distance into the future. Setting -y = 0 leads to shortsighted policies that are
interested only in the most immediate reward. Setting the discount factor near
one leads to returns that weigh rewards some time into the future and results
in optimal policies that may forgo immediate rewards in order to set up larger
rewards down the road. For any -y < 1 the effects of rewards far into the future
eventually become negligible and the return is finite. Because a process may be
stochastic, the objective is to find a policy that maximizes the expected- return.

Optimality Criterion

For a fixed policy f, define Vf(x) to be the expected return, given that the process
begins in state x and follows policy f thereafter.

To define V more precisely we must introduce more notation. Let X(x, f, n)
be a random variable denoting the state that results from starting in state x and
following policy f for n steps. Note that X(x,f,O) = x and X(x,f, 1) = T(x,f).
Similarly, let R(x, f, n) be the random variable denoting the reward received at
time t + n after starting in state x and following policy f for n + 1 steps. So,
for example, R(x,f,O) = R(x,f). Also, we will sometimes use X(x,a,1) as
alternative notation for T(x, a). Given these definitions, V1 is defined as

V(x) = E[R(x,f,O) + yR(x,f, 1) + -y2R(x,f,2) + ... + _ynR(x,f,n) + ...]. (3.6)
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V is called the value function for policy f and it can be used to define an
optimality criterion. Namely, given a description of a Markov decision process,
the objective is to find a policy whose value function is uniformly maximal for
every state. That is, find a policy f" such that

V-(x) = max(Vj(x)) VXEs. (3.7)

Intuitively, an optimal policy is any control strategy that always maximizes
the expected return, no matter what state the process finds itself in and no matter
what the history of the process may be.

3.1.3 Example

To illustrate how sequential tasks can be formulated as Markov decision processes,
consider the task shown in Figure 3.1. In this task, we want the robot to navigate
from an initial state S, through the maze, to the goal state G. The robot can take
unit length steps in each of the four principal compass directions and cannot pass
through barriers. For simplicity we will assume that actions are deterministic.

A formulation of this task as a Markov decision process is shown in Figure 3.2.
In this formulation the robot receives a positive reward only when it executes the
action that causes it to enter the goal state. In general the reward function must
be carefully chosen if the optimal policy associated with the decision process is to
match the desired behavior. One particularly convenient approach is to identify a
set of desirable goal states and to reward the agent whenever it encounters one of
these states. Following this approach, the optimal policy usually corresponds to
taking actions that achieve the goal in the least number of steps. Of course for a
given task, or behavioral interaction, there are an infinite number of formulations
whose optimal policies will yield the desired behavior.

The optimal policy and value functions for the formulation given in Figure 3.2.
is shown in Figure 3.3. The optimal policy is indicated with an arrow in each
square. The values for V . are shown in the lower right corner of each tile. These
values are for -j = 0.9. Notice that the policy is defined over the entire state
space and that following the policy from any location traces out a shortest path
to the goal state. Also notice that the value function monotonically increases as
the robot approaches the goal state. Indeed, for this formulation of the task, the
optimal trajectory follows the gradient in the value function.

3.2 Dynamic Programming

At this point Markov decision processes have been defined and shown to be useful
for formalizing sequential control tasks. However, a crucial question has not been
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Figure 3.1: The navigation task, a simple example of a sequential control problem.

The objective of the robot is to navigate from an initial location S to a goal state
G as quickly as possible.
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Rx.a)- lit x-10 anda-N
10 otherwise

A - N. S. W, E)
S- 1,2,5,6,7,8,10,11.13,14

15. 16, 18, 19.. 20, 21.23, 24, 25)

T(x,a):

A 1 2 5 6 7 8 10 11 13

N 1 2 5 1 2 8 5 6 8

$ 6 7 5 11 7 13 15 16 18

E 2 2 5 7 8 14 16 11 14

W 1 1 5 6 6 8 10 11 13

A 14 15 16 18 19 20 21 23 24 25

N 14 10 11 13 14 15 16 18 19 20

S 19 20 21 23 24 25 21 23 23 25

E 15 15 16 19 20 20 21 24 25 25

W 13 14 16 18 18 19 21 23 23 24

Figure 3.2: A formalization of the navigation task as a Markov decision process.
Shown is the state space S, the set of possible actions A, the reward function R,
and the transition function T. In this model, there are 19 states, 4 actions, and
the agent receives a reward when it first enters the goal state.
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Figure 3.3: The optimal policy and optimal value function for the navigation task.
The direction of the arrow indicates an optimal action to take when occupying
a given tile. Values for the optimal value function are shown in the lower right
corner of each tile. Notice that the value function is inversely proportional to the
distance to the goal and that the optimal policy follows the gradient in the value
function.
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addressed: How do we find an optimai policy? If all of the parameters of the
Markov decision process are known precisely, then Dynamic Programming can
be used to compute an optimal policy. This section reviews essential ideas and
techniques of dynamic programming.

3.2.1 The Brute Force Method

One way to obtain the value function for a given policy is to estimate it by
Monte Carlo simulation. That is, Vj(x) can be estimated accurately by repeatedly
starting the process off in state x, letting it follow policy f for some (possibly
long) period of time, and accumulating a return for each trace. Since each trace
is independent, the law of large numbers guarantees that an average of the trace
returns will eventually converge to the expected value (V(x)).

A better way to compute the value function is to compute it directly by noticing
that it can be defined recursively. In particular, the definition of V(x)

V(x) = E[R(x, f, O) +-yR(x,f, 1) + 'R(x,f,2) +... + -yR(x,f,n) +...] (3.8)

can be written recursively as

VI(x) = E[R(x, f, 0)] + 'E[Vj(X(x, f, 1))] (3.9)

or equivalently as

V1(x) = p(x, f) + yjE[Vj(X(x, f, 1))]. (3.10)

For finite state processes, the expectation on the right hand side can be written
as a sum over a finite number of states, leading to the expression

111(x) = p(x,f) + -Y E P",Y(f)V1(y). (3.11)
yes

Equation 3.11 defines a family of linear equations which can be solved for V when
combined with the constraint expressions

E P(f) = 1V, (3.12)
YES

and the values for p(x, a) and Pr,(a) provided by the model.

Thus, given a finite state, finite action Markov decision process and any fixed
policy, the value function for that policy can be computed directly; although
solving the linear equations may be time consuming.

Given this means for computing a policy's value function, one way to find an
optimal policy is to enumerate all possible policies, compute the value function for
each, and choose one that is uniformly maximal. Unfortunately, this exhaustive
approach is computationally intractable even for small problems since the number
of possible policies grows exponentially in the state space size and the number of
possible actions.
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3.2.2 Policy Iteration

Dynamic programming offers a much cheaper (but generally still expensive) method
for solving Markov decision problems. In dynamic programming, instead of com-
paring all possible policies in search of an optimal one, an arbitrary policy is
initially selected and then incrementally improved until it is optimal.

Suppose we have two policies f and g, and we would like to know if g is
uniformly better than f. One way to answer this question is to compute V and
V as above and compare them directly. A less expensive method, which only
requires the full computation of V, follows.

Suppose that in any initial state x, instead of always following policy f, we first
follow policy g for one step and then switch back to f, which we follow thereafter.
Consider the expected return that results from such a strategy. In particular, let
Qj(x, b) denote the expected return, given that starting in state x the process
executes action b and then follows policy f thereafter. Q! is called the action-
value function for policy f. The action-value function can be expressed in terms
of Vf as follows:

Q(x, b) = p(x, b) + Y F, PY (b)V(y). (3.13)
yEbfS

Given Equation 3.13, Qf(x, g(x)) is much simpler to compute (given that we know
Vf) than V9.

Given the action-value function, we can determine if g is better than f. In
particular, suppose that the expected return obtained by following g for one step
and then switching back to f is uniformly as good as or better than the expected
return obtained by following f only. That is, suppose that for all x E S,

Qf(x,g(x)) ? V(x). (3.14)

Then by induction g is uniformly better than f. This can be seen by considering
the expected return that results from following g for n steps and then switching
back to f. Denote the resulting expected return as Q1 (x,g,n). For n = 1,

Qj(x,g,n) = Qy(x,g(x)) = p(x,g(x))+'y E P'Y( g (X))V(y). (3.15)

It is given that Q1 (x,g(x)) 1/j(x), so for n = 1 we have

Qy(x,g, 1) ? V(x) for all x. (3.16)

For the inductive step, assume Q1 (x, g, n) ? V(x) for all x. Now in general we
can write

Qf (x,g, n + 1) = p(x,g(x)) + 1: - P y(g(x))Qy(y,g, n). (3.17)
yES
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But since Qj(y,g,n) Vj(y) for all y, it follows that

Qf (x,g, n + 1>_p(x, g(x)) + -i Py(g(x)) V(y). (3.18)
YiES

The right hand side of this equation is just Qj(x,g, 1), which by assumption is
greater than or equal to V1 . So we have

Qj(x,g,n + 1) >_ V for all x and n. (3.19)

Of course, V/(x) is the limit as n goes to infinity of Qf (x,g,n), so V,(x) __ V(x)
for all x. This result is summarized by the policy improvement theorem [Bellman,
1957; Bertsekas, 1987; Watkins, 1989.

Theorem 1 (Policy Improvement Theorem)

Let f and g be policies, and let g be chosen so that

Qf(x,g(x)) > V(x) for all x E S. (3.20)

Then it follows that g is uniformly better than f. That is,

V9(x) > If (x) for all x E S (3.21)

The policy improvement theorem is a cornerstone of dynamic programming
because it provides a relatively efficient means of finding better and better policies.
Beginning with a policy f, a better policy f' can be found by 1) computing V,
2) calculating the action-value function Qj(x, a) for all state-action pairs (x, a) E
S x A, and 3) defining f' at each state by choosing the action that maximizes the
action-value function. That is, for all x,

f'(x) :=a such that Qj(x,a) = max Qf(x, b). (3.22)

6EA

By the policy improvement theorem f' is guaranteed to be uniformly as good as
or better than f.

This process can be repeated over and over again until, after a finite number
of iterations, f no longer changes. At this point, the final policy f* will satisfy
the optimality-equation

f'(x)= a such that Qf.(x,a) = max Q(x,b). (3.23)

6EA

Even though we know each iteration improves f, is it pos -le that the terminal
policy f* is non-optimal? The Optimality Theorem tells us that indeed f* is
optimal. The following version of the Optimality Theorem is taken from [Watkins,
1989]; the proof of a similar version can be found in [Bellman, 1957].
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f := an arbitrary initial policy
Repeat

1. calculate the value function V1 ,
2. calculate the action-values Q;(x, a) for all x,a,
3. update the policy for all x by choosing f(x) = a such that

Qj(x,a) = maxbEA Qf(x,b)
until there is no change in f at step 3.

Figure 3.4: The Policy Iteration Algorithm.

Theorem 2 (Optimality Theorem)

Let a policy f have an associated value function V* and an action-value func-
tion Q*. If the policy f* cannot be further improved by using the policy improve-
ment theorem, that is if

V1(x) = max Q*(x,b) (3.24)
bEA

and
fo(x) = a such that Q*(x,a) = V*(x) (3.25)

for all x E S, then V* and Q* are the unique, uniformly optimal value and action-
value functions, respectively, and f* is an optimal policy. The optimal policy f* is
unique unless there are states at which there are several actions with the maximal
action-value, in which case any policy that recommends actions with the maximal
action value according to Q* is optimal.

A summary of the policy iteration algorithm is shown in Figure 3.4. This
algorithm is guaranteed, via the policy improvement and optimality theorems, to
converge on an optimal policy for any finite Markov decision problem.

3.2.3 Value Iteration

The policy iteration algorithm is an improvement over exhaustive search; however,
it is still expensive. Note that the value function must be recalculated in each
stage. Even though the value function for the new policy may be very similar to
the old one, it cannot easily be derived from it, but instead must be computed by
solving the set of linear equations given by Equations 3.11 and 3.12.



Value iteration is another computational technique for solving Markov deci-
sion problems that is often more efficient than policy iteration. In value iteration,
instead of repeatedly computing the value functions for a series of ever improving
non-optimal policies, the optimal policy is obtained by directly solving the opti-
mality equation (Equation 3.23) for a series of finite-horizon tasks. As the horizon
goes to infinity, the optimal policies of the finite horizon problems converge to the
optimal policy for the original Markov decision problem.

In a finite horizon problem, the objective is find a policy that uniformly max-
imizes the expectation of a return that is truncated at the horizon boundary. For
example, when the horizon equals one, n = 1, the goal is to find a policy that
maximizes the expected reward received after one step. For n = 2, we want to
maximize the cumulative reward received after two steps, and so on.

Let Vn denote the optimal value function for an n-step finite horizor problem.
Since rewards are only received after executing an action, we have VO(x) = 0
for all x. V1 (x) can be determined by choosing the action that has the highest
expected r'ward, namely

V1(x) = max p(x,a). (3.26)
aEA

Similarly, Vn(x) can be expressed recursively as the sum of the expected reward
received after one step plus the discounted expected return for an n - 1 horizon
problem that follows. That is,

V"(x) = max[p(x,a) + "fE[V -(T(x,a))], (3.27)
aEA

where
E[V"-1(T(x,a))] = ZPy(a)Vn-l. (3.28)

Y/ES

The optimal policy for a finite horizon problem is obtained by choosing the
action that achieves the maximum in Equation 3.27. If fn denotes the optimal
p.)licy for an n-step finite horizon problem, then

fn(X) = argmax[p(x,a) + yE[Vn- 1 (T(x,a))]. (3.29)
aEA

By starting at n = 0, Vn can be computed by repeatedly applying Equa-
tion 3.27. For finite rewards and -y < 1 as n --+ oo, JVn - V*J -+ 0. Similarly,
since Vn converges to V*, fn converges to f" (see Ross for further details [Ross,
1983]).

The value iteration algorithm is summarized in Figure 3.5. Notice that each
stage of the process is computationally equivalent to calculating the action-value
function in policy iteration; however, in value-iteration the value function for the
next stage is determined automatically and we don't have to compute it by solving
a set of linear equations.
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V°(x) = 0 for all x,
Q°(x, a) = 0 for all (x, a) E S x A
n = 0,
Repeat

n = n +1,
for each x E S do:

for each a E A do:
Qn(x, a) = p(x, a) + ' FISs Py (a) V 1 (y),

Vn(x) = maxaEA Q"(x,a)
fn(x) = arg maxaEA Qn(x,a)

until the difference betu een Vn and V' - 1 is sufficiently small for all x.

Figure 3.5: The Value Iteration Algorithm.

3.3 Q-Learning

There is a close relationship between reinforcement learning and dynamic pro-
gramming. In both, the world is characterized by a set of states, a set of actions,
and a reward function. In both, the objective is to find a decision policy that max-
imizes the expected cumulative reward received over time. There is an important
difference though. When solving a Markov dec:ision problem with dynamic pro-
gramming, the analyst (presumably the desigier of the eventual control system)
has a complete (albeit stochastic) model of the environment's behavior. Given
this information, the analyst directly comput';s the optimal policy. In reinforce-
ment learning, the set of states and the set of possible actions are known a priori,
but the effects of actions and the production of reward are initially unknown.
Thus, an analyst cannot compute an optimal policy a priori. Instead, an optimal
control strategy must be learned through experimentation in the environment.
Dynamic programming is an offline analytical tool; reinforcement learning is an
online adaptive control technique.

The work in this dissertation is based on a reinforcement learning algorithm
called Q-learning developed by Chris Watkins (Watkins, 1989]. We focus on Q-
learning because of its simplicity and because of its close relationship with dynamic
programming and the Theory of Markov decision processes. Q-learning is also
significant because one version of it, namely 1-step Q-learning, when applied to
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Markov decision processes under appropriate conditions, can be shown to converge
to an optimal policy. Although there are several varieties of reinforcement learning
algorithms, most are based on ideas from dynamic programming and are quite
similar to Q-learning [Samuel, 1963; Michie and Chambers, 1968; Sutton, 1984;
Holland, 1975; Kaelbling, 1990].

The connection between Q-learning and dynamic programming is strong. Q-
learning can be thought of as a form of incremental dynamic programming, where
the optimal action-value function is computed incrementally based on the system's
interactions with its environment. Q-learning can be derived as a modification of
either policy iteration or value iteration. The following section derives Q-learning
as a form of incremental policy iteration.

3.3.1 Q-Learning as Incremental Policy Iteration

Recall that in policy iteration, an optimal policy is obtained upon convergence
of a sequence of policy improvement stages. During each stage, the action-value
function, Qj, for the current policy is computed and used to derive an improved
policy for the next stage (see Figure3 3.4). The improved policy, f', is chosen by
selecting for each state the action that locally maximizes the expected return.
That is,

V~rEsf'(X) = a such that Q(x,a) = max Qj(x,b). (3.30)
beA

The new policy (via the policy improvement theorem) is guaranteed to be uni-
formly as good as or better than the current policy.

Computing the action-value function is a crucial step in policy iteration. Clas-
sically, Q! is determined by first solving for V1 (using the linear equations defined
in Equations 3.11 and 3.12) and then using Equation 3.13 to compute its val-
ues. Unfortunately, both of these steps require prior knowledge of the statistics
that govern the process (namely p(x, a) and P,,(a)), which for learning tasks are
initially unknown.

If a learning algorithm based on policy iteration is to be developed, it will be
necessary to find a way to compute the action-value function. One way to proceed
is to estimate the needed statistics directly. Following this approach one can use
observations of interactions with the world to develop estimates of {p(x, a)) and
{P,,(a)). These estimates can then be used to compute estimates of the action-
value functions and eventually compute an estimate of the optimal policy. If
the world is stationary, and if each state-action pair is tried often enough, then
accurate estimates can be obtained and eventually the optimal policy learned.

The trouble with this approach is that it is not particularly incremental. It is
too expensive to recompute the policy after each step. Indeed, computing a policy
just once can be very expensive, especially for large problems. If this method
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were to be used, it would be necessary to update the policy periodically, where
the recomputation rate would depend on the time required to do it. During the
interval between recomputations the agent's policy would be frozen and it would
not be able to take advantage of the experience it had gained since the last policy
computation. Also, this method would be inappropriate if the agent had to act
continuously in the world. An agent may not be able to afford to take time out
to recompute its policy.

A better approach that is computationally less expensive and %Y.ore incremental
is to appeal directly to the definitions of V! and Q] and estimate them directly via
Monte Carlo simulation. One way to estimate Vl'(x) directly is simply to average
the returns observed over multiple trials (or sequences) that begin in state x and
follow f. A similar technique can be used to estimate Qf.

Estimating V1 and Qf

If the system is in state x at time t, then an estimate of V(x) can be obtained
by observing the rewards obtained by following f. The total discounted reward
received in such a sequence is called the actual return for time t and is given by:

rt = rt + yrt+l + y 2rt+2 + ... + y1"rt+n + .... (3.31)

After n steps an estimate of the actual return can be obtained by considering
rewards received so far. This is called the n-step truncated return,

rn) = rt + yrt+l + -v2rt+2 + ... + -yirt+,. (3.32)

If rewards are bounded and - < 1, then limn-* Irt -r ]I = 0. So for a spfficiently
large n an accurate estimate of the actual return can be obtained.

An accurate estimate of V!(x) can then be obtained by averaging a large
number of n-step truncated returns. An estimate of V can then be obtained by
performing enough of these experiments for each state-action pair.

The advantage of estimating the value function directly using Monte Carlo
methods, instead of computing it by solving a set of linear equations, is that
the estimate can be updated incrementally as new experiences provide additional
information. However, there are still a number of problems with this approach:

1. The value of the truncated return is only available after n steps. If n is
large, as it should be to obtain an accurate estimate, this delay could be
significant. Also, if truncated returns for multiple state-action pairs are to
be obtained simultaneously, then a possibly long sequence of state, action,
and reward triples must be remembered.
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2. For stochastic systems, the truncated returns obtained may have a large
variance, and many experiments will be required to estimate the expected
value accurately.

3. In order to obtain the truncated return, the agent must follow f for n steps
before it can try a non-policy action. Thus, non-optimal actions can only
be tried every n steps, and return estimates for non-optimal actions are
expensive to obtain.

These problems can be overcome by using a different kind of estimator. Instead
of accumulating actual rewards for a long series of steps, we can define an estimator
that has a component for the rewards that have actually been received (up to n
steps) and a component that estimates the reward to be received in the future
(after n steps). That is, suppose the agent performs an experiment as before.
Starting in state x it executes f for n steps. An estimate of the actual return
received can be obtained by augmenting the n-step truncated return with a term
that accounts for the reward that would be received after time t + n. If the state
obtained after n steps is xt+,, then the expected value of the reward to be received,
after n steps, assuming the system follows f, is just V(xt+n). Of course, V is
not known ahead of time. It is what we are trying to estimate. However, an
approximation of V! can be obtained from our current estimate. Let Ut denote
the approximation to V at time t.

The corrected n-step truncated return is then defined as

r,"' -=- rt + yjrt+i + ... + -"-'rt+,- + "L"Ut(xt+n). (3.33)

If U equals V1 , then r(") is an unbiased estimator of V. That is,

E[r(")] - V(x). (3.34)

Even when Ut is not an accurate estimate of Vf, the corrected n-step estimate
is still useful for estimating the action-value function. This is due to what Watkins
calls the error-reduction property of corrected truncated returns [Watkins, 1989].
In particular, let AM be the maximum absolute error in Ut with respect to V, that
is,

Al = max IUt(x) - VI'(x)I. (3.35)

Then clearly,
max IE[r(x)]- V(x) YAl . (3.36)xES

The significance of this result is that the average of the corrected truncated returns
for any given state will never have an error greater than y"'M. Also, M will tend
to zero as experiments with the maximally erroneous state accumulate. Thus,
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for a fixed policy f, the value function can be estimated accurately by averaging
corrected n step truncated returns.

There are two key advantages to corrected truncated returns. First they are
effective even when n is small. The error-reduction property holds for all n > 0.
This means that 1) estimates for the action-value function can be obtained without
excessive delay, 2) estimates for non-policy actions can be obtained more easily
since the agent need not follow its policy for a long sequence of actions in order
to obtain useful estimates, and 3) variation in the estimate due to the sum of a
large number of random variables can be reduced. In general, there is a tradeoff
between the variance in an estimate and the effect of bias in an estimate due to
error in Ut. For large n, the variance in a bingle estimate will be large compared
to that for small n. Conversely, the impact of errors in U decreases exponentially
with increasing n.

A second advantage of corrected truncated returns is that a weighted sum of
corrected truncated returns for different values of n can be implemented efficiently
and locally in time. In particular, the n + 1-step estimator can be expressed in
terms of the n-step estimator as follows:

[n+ l  r]  + [r+ +YU t (Xt+,+) - Ut(Xt+n)]. (3.37)

The bracketed term on the right side of the equation can be computed locally in
time since it depends only upon the observables r,, X,+n+l and x+.t. Using this
relationship, a series (or weighted sum) of corrected estimators can be efficiently
computed over time and used to update estimates of V and Q! incrementally. The
bracketed term on the right is the difference between two estimates of Vj(Xt+n).

The term Ut+,(X,+n) is an estimate available at time t + n. The term rt+n +
YUt +n+1 (xt+n+1) is an estimate obtained by waiting for one step and observing
the next state and rewards that follow. The term [r,+, + fU t (Xt+n+l) -Ut(X,+n),

called the temporal difference error, estimates the error in Ut+n(X,+n) based on
information gained after one time step. Techniques based on these temporal dif-
ferences (TD) were first developed and formally analyzed by Sutton, who showed
them to be useful for a wide range of prediction and estimation tasks [Sutton, 1984;
Sutton, 1988; Sutton and Pinette, 1985].

Incremental Policy Improvement

Equipped with a range of methods for estimating an agent's action-value function,
we must now consider the second major operation in the policy iteration algorithm,
policy improvement. A straightforward approach is to update the policy only after
an accurate estimate of Q! has been obtained. The trouble with this approach is
that it may take a long time to estimate Qj. In the meantime, the agent's policy
will continue to be suboptimal and fail to reflect the information gained since the
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last updating. In Q-learning, the agent's policy is updated after each time step
so that it reflects the most current estimate of the action-value function and the
experience gained so far.

A particularly simple version of the Q-learning algorithm is shown in Figure 3.6
The first step in this algorithm is to initialize the agent's action-value function. If
prior knowledge of the task is known, it may be possible to choose initial values
that positively bias the action-value function. Otherwise, random or uniform
initial values will do. Next, the agent enters the main control cycle. The first
step in the control cycle is to determine the current state of the world.' Next,
the agent evaluates its policy function for the current state to obtain an estimate
of the optimal control action. Most of the time the agent executes this action,
but occasionally an action is chosen at random. Random actions help to ensure
experimentation with all state-action pairs. The general question of how to trade
off exploration (acting to gain information or experience) against exploitation
(acting to gain reward) is difficult to answer and has a long history in game theory,
mati -matical statistics, and optimal control [Robbins, 1952; Bradt et al., 1956;
Bradt and Karlin, 1956; Feldaman, 1962; Dubins and Savage, 1965; Epstein, 1967;
Holland, 1973; Holland, 1975; Kaelbling, 1990; Hartman, 1990]. The algorithm in
Figure 3.6 takes a particularly simple approach, choosing on each step a random
action with a fixed probability p. A slightly more sophisticated approach is to
choose actions according to a Boltzmann distribution, where the probability of
selecting action a in state x is given by

p(aIX) = eQ(xa)/T (3.38)
PbEA eQ(xb)/T

and where the temperature parameter T is slowly decreased over time in order
to decrease exploration as experience accumulates. After performing the selected
action, the agent observes the next state, y, and the reward, r, obtained. These
observations are used to construct a corrected 1-step estimate for Q(xt, at),

r(1) = r + "yU(y). (3.39)

The 1-step estimator is particularly convenient since it is immediately available.
However, more elaborate multi-step estimators can also be used. Next (Step 5),
the action-value for the current state-action pair is updated using the rule:

Q(x,a) := (1 - a)Q(x,a) + a[r + yU(y)] (3.40)

where a is a learning rate parameter ranging between 0 and 1. This updating rule
implements a temporally weighted average, where the recent estimates receive

2Typically, it is assumed that the state is defined in terms of the agent's current sensory
inputs Howeer, this is not an intrinsic part of the theory.
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Q 4- a set of initial values for the action-value function (e.g., uniformly zero)
f(x) := a such that Q(x,a) = maxbEA Q(x,b),
Repeat forever:

1) x := the current state
3) Select an action a to execute that is usually consistent with f

but occasionally an alternate. For example, one might choose to
follow f with probability p and choose a random action otherwise.

4) Execute action a, and let y be the next state and r be the reward
received.

5) Update Q(x, a), the action-value estimate for the state-action pair (x, a):
Q(x, a) 4- Q(x, a) + a[r + -IU(y)]

where U(y) = Q(y,f(y)).
6) Update the policy f:

f(x) = a such that Q(x, a) = maxbEbfA Q(x, b),

Figure 3.6: A simple version of the 1-step Q-learning algorithm.

more weight than old estimates. Temporally sliding estimates of this type are
appropriate for adaptive control in general since t.. - task may be non-stationary.
However, they are especially appropriate for Q-learning since early action-value
estimates may have large errors ccmpared to later ones. Finally (Step 6), the
agent's policy is updated and a new cycle begins.

3.3.2 The Convergence of Q-Learning

Even though Q-learning is based on dynamic programming, it is not clear that
it will necessarily learn an optimal policy. Indeed, in the general case (i.e., when
using multi-step estimators), the convergence question remains open. However, it
has been shown that under appropriate conditions 1-step Q-learning is guaranteed
to converge on an optimal policy [W¥atkins and Dayan, 19921. A set of conditions
sufficient to guarantee convergence to an optimal policy follows:

1. the underlying decision process is Markovian,

2. the corrected 1-step estimator is used to update Q,
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3. each state action-pair is tried infinitely often,

4. the learning rate parameter a is varied with time so that a,, the learning
rate at time n,

(a) is positive and monotonically decreasing to zero,

(b) the sum of a, as n -- oo diverges, and

(c) the sum of [a,] 2 as n -- oo is finite.
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4 The Block Stacking Testbed

We are now in a position to address the central topic of this dissertation, namely,
the integration of active perception (for efficient task-oriented perception) and
reinforcement learning (for adaptive, non-model based control). This chapter
describes the specific block manipulation task used in the experiments and also
presents a formal mathematical model for describing the control tasks facing an
embedded learning system that interacts with the world through an active visuo-
motor system.

4.1 The Block Manipulation Task

The external part of the block manipulation task is quite similar to the block
stacking tasks studied in classical planning [Nilsson, 1980; Sussman, 1975]. The
block manipulation task involves a simulated robot working on a simulated assem-
bly line, as shown in Figure 4.1. The robot's job is to arrange piles of blocks into
certain desirable (or goal) configurations before they fall off the end of a conveyor.
If the robot manages to configure the blocks properly, it receives a positive reward,
the pile disappears, and a new pile appears at the head of the conveyor. If after
nfqit steps the robot fails to configure the pile, the blocks fall off the conveyor, the
trial ends, and a new pile appears at the head of the conveyor. The piles coming
down the conveyor vary in the number of blocks they contain, in the properties of
the blocks, and in the initial arrangement of the blocks. However, only one pile
is on the conveyor at a time, and it is possible to properly configure each pile in
the allotted time. In general, there are no restrictions on the number of blocks
that can be in a pile; however in our experiments we limited piles to 20 or fewer
blocks.

The robot's objective is to accumulate as much reward as possible, or in ob-
jective terms, to configure piles as quickly as possible.

Blocks have various features that differentiate them from one another and that
are used to define "proper configurations." For example, one can imagine blocks
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Figure 4.1: A sketch of the block manipulation task. Key properties of this task
are 1) the robot has a limited amount of time to configure a pile of blocks properly,
2) piles vary considerably from trial to trial and may contain an arbitrary number
of blocks, 3) the robot has no a priori knowledge of the task, but learns it by
receiving a reward upon the successful completion of a trial, and 4) in addition
to learning overt physical actions, the robot must also learn to control an active,
but limited, sensory system.
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coming in three sizes (small, medium, and large) and three colors (red, green,
and blue) and a "proper configuration" being defined as a-small-green-block-on-
a-large-red-block.

We assume that block dynamics are similar to those typically used in classical
planning. That is,

1. The conveyor (or table) is large enough to support an infinite number of
blocks.

2. A pile consists of a series of stacks, where each stack is defined to be a
column of one or more blocks, and each block can directly support or be
directly supported by at most one block.

3. The robot has a single manipulator, which it can use to move one block at
a time.

4. Only the robot moves blocks, and the robot's actions have deterministic
effects.'

5. A block can be picked up only if it does not support another block, and a
block can be placed only on the table or on a clear block. Whole stacks
cannot be moved, nor can blocks be fitted into the middle of a stack.

Attention is focused on one particularly simple block manipulation task, which
we will call the GB-task (for GREEN-BLOCK-task). In this task, blocks come in
three colors: red, green, and blue, and the agent receives a positive reward, R.,
whenever it manages to pick up a green block. That is, goal states consist of those
configurations of the physical world in which the robot is holding a green block.
We also assume that each pile contains exactly one green block.2 Even though this
task may seem simple, it is important to realize that it is not completely trivial
since the robot may need to unstack a considerable number of blocks before it
can uncover the green block. Also, since the robot is to learn the task, its sensor
and effectors are initially uninterpreted and it has no a priori knowledge of the
task. Finally, keep in mind that the robot has a sensory-motor system that is
flexible, but limited in the amount of information it provides the decision system.

'As we will see in later chapters, for certain instantiations of the CR-method this assumption
can be relaxed.

2The reason for this assumption will be made clear in the coming chapters, when we describe
an approach for dealing with multiple green blocks. In the meantime, however, the intuitive
reason for the restriction is to simplify the amount of sensory processing required by the robot.
In particular, if multiple green blocks exist, then the robot (if it is to behave optimally) must
analyze and compare the utility of strategies for pursuing each green block. While this selection
process is important, it is a complication that gets in the way of studying more basic issues, so
it is ignored for now.
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In addition to learning to perform the correct overt actions, the robot must also
learn to control its sensory system in order to generate an adequate, task-specific
representation.

4.2 The Sensory-Motor System

The sensory-motor system is considerably different from the objective represen-
tations traditionally used. The robot is equipped with an active sensory-motor
system that provides selective, but limited, access to the external world. Our
contention is that many problems of interest only require keeping track of a few
objects at a time (for example, see [Chapman, 1989]).

The specification for the embedded decision system's interface to the sensory-
motor system is shown in Figure 4.2. On the sensory side, the system at each
point in time generates a 20-bit binary input vector, which defines the state of
the agent's internal representation. The information encoded in the input vector
falls into three general categories: peripheral aspects, local aspects, and relational
aspects. In general, peripheral aspects register spatially non-specific information
about the world, such as the presence or absence of indexical properties (e.g.,
colors, shapes, and textures). Our robot's sensory-motor system has 3 peripheral
bits that register the presence of red, green, and blue in the scene, and 1 bit
that registers whether or not the robot is holding an object. Both local and
relational aspects register properties of objects that are marked.3 Local aspects
register intrinsic local features of an object, such as its shape, color, orientation,
and texture. Relational aspects register relational properties between marked
objects, such as relative shape, relative color, and relative position. The system
in our experiments has two markers, called the action-frame and the attention-
frame, respectively. The local aspects for these markers define 14 of the 20 bits
in the input vector. Local aspects register the color of the marked object (2-
bits/marker), the shape of the object (1-bit/marker), whether or not the marked
object is currently being held (1-bit/marker) and the number of blocks on top
of the marked object (2-bits/marker). The robot's sensory system registers two
relational aspects - one for recording vertical alignment between markers (1-bit)
and one for recording horizontal alignment (1-bit).

The internal motor commands supported by the sensory-motor systems are
shown on the right in Figure 4.2. Two types of internal motor commands are
distinguished: overt actions and perceptual actions. Overt actions are commands
that change the state of the external world with respect to the task. This can
either occur by performing a physical action that manipulates some object in the

'These bits correspond to aspects in Agre and Chapman's theory [Agre, 1988; Chapman,
1990b]
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Figure 4.2: A specification for the block stacking robot's sensory-motor system.
The system has two markers, an action-frame marker and an attention-frame
marker. The system has a 20-bit input vector, 8 overt actions, and 6 perceptual
actions. The values registered in the input vector and the effects of internal
action commands depend upon the bindings between markers in the sensory-motor
system and objects in the external world.



physical world (e.g., picking up a block) or by changing the configuration in the
sensory-motor system in a way that changes the robot's ability to manipulate
objects in the external world (e.g., moving a marker that establishes the reference
frame used by other overt actions). Perceptual actions are commands that change
the agent's perception of the world but do not affect the external world or the
agent's ability to interact with it. The robot has a total of 14 internal motor
commands: 8 are overt, 6 are perceptual.

All overt actions are associated with the action-frame marker. In addition
to providing perceptual information, this marker is also used to establish the
reference frames for manipulating objects in the world. The two primary overt
actions are for grasping and for placing objects. For grasping, the action grasp-
object-at-action-frame causes the robot to pick up the object marked by the action-
frame marker. The action succeeds if the robot's hand is empty and the marked
object has a clear top. For placing, the action place-object-at-action-frame causes
the system to place a block it is holding on top of the object pointed to by the
action-frame marker. This action works if the robot is holding a block and the
target object has a clear top. The remaining overt actions are used to move the
action-frame to different spatial locations. These commands allow the agent to
index functionally relevant objects by primitive indexical properties (color and
shape) or by spatial relationships (top-of-stack and bottom-of-stack). Although
these indexing actions do not change the external world directly (i.e., no blocks get
moved), they are overt actions in the strictest sense because they affect the robot's
ability to manipulate the external world. Moving the action frame changes the
effects of grasp and place actions. Once a marker is placed on an object, it tracks
the object until the binding is explicitly broken with another indexing command.

A repertoire of perceptual actions are associated with the attention-frame
marker. These actions are used exclusively for gathering additional sensory infor-
mation. No overt actions depend on the placement of the attention-frame marker.
As for the action-frame, indexical properties are used to guide the placement of the
attention frame. As will be seen in Chapter 6, the attention frame marker plays
an important role in allowing the system to disambiguate functionally different
situations in the world.

The robot's sensory-motor system was directly motivated by Ullman's visual
routines model and Agre and Chapman's work on deictic representations; and
although it is a simplification, it embodies many of the essential ideas of the
active-perception paradigm. In particular, the agent's internal representation is
flexible, but limited in scope. This follows since the internal representation is
almost completely defined in terms of the action and attention frame markers
(or processing foci), which are actively controlled by a higher level decision com-
ponent. One feature that may appear to be missing is the ability to assemble
complex visual routines from elemental operations. However, this is not the case
since in general visual routines are assembled and dispatched by higher level de-
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cision components. In our robot, "visual routines" emerge as the decision system
learns to control the sensory-motor system in order to gain needed information.
Admittedly, some of our "primitive aspects" are unrealistically complex and would
probably be implemented using visual routines in a more realistic system.

Notice that the internal state space defined by the sensory inputs is small
compared to the state space that could result if every object in the domain were
represented objectively [Swain, 1990]. The principal advantage of this reduced
internal representation is that it leads to more feasible perception and a simpler
decision task. For example, a pile of 50 blocks would require 100 bits and a state
space of at least 350 (or 7.1 x 1023 states) just to encode the color of each block. Our
robot's input vector is limited to 20 bits (or about a million states). The principal
disadvantage of the reduced representation is that it limits the complexity of the
problems that can be solved by the agent. For example, if during the course of a
problem, a decision depends upon features of three separate blocks, then the robot
will not be capable of solving the problem since it cannot simultaneously represent
features of more than two blocks. Of course, some sort of memory mechanism
could be added or the sensory-motor system could be expanded to allow the system
to register more information (for example, by adding an additional marker), but
in general new problems can always be defined that, are beyond the scope of the
internal representation.

Also, notice that individual objects in the world are rererenced not by arbitrar-
ily assigned names, but by the features that make them relevant. For example,
the action Move-action-marker-to-stack-top would cause the action-frame to move
upwards from its current position until it reaches the block at the top of the stack.
What makes this top block significant is not any absolute name like "BLOCK-43,"
but the relationship it holds with the rest of the world. Namely, this block is at
the top of a stack and affords [Gibson, 1979] being removed and placed on the
table (possibly to get at another more important block) [Agre, 1988]. The variety
of features and properties that can be used as indexicals also delimits the types
of problems that an agent can solve.

Finally, notice that physical actions in the world (e.g., picking and placing
blocks) are performed relative to reference frames established by the action-frame.
This is consistent with the view that objects in the world fill roles according to
their features and that the control strategy learned by the decision system should
be specified in terms of those abstract roles [Agre, 1988; Ballard, 1989b].

Our objective is to develop adaptive control systems that can learn to solve
the GB-task. This objective raises an interesting question. Does such a control
strategy exist? That is, given the limited capabilities of the robot's sensory system,
does a stationary decision policy (i.e., a fixed mapping from internal states to
action commands) exist that solves the task? For the GB-task, the answer to this
question is "yes". Figure 4.3 shows a list of condition-action rules that define
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If 1) the hand is not empty and
2) the action-frame is not on the table,

then move the action frame to the table.

If 1) the hand is not empty and
2) the action-frame is on the table,

then place the held object at the location marked by the action frame.

If 1) the hand is empty and
2) the attention-frame is not on a green block,

then move the attention-frame to the green block.

If 1) the hand is empty,
2) the attention-frame is on a green block, and
3) the attention-frame and the action-frame are not vertically aligned,

then move the action-frame to the green block.

If 1) the hand is empty,
2) the attention-frame is on a green block,
3) the attention-frame and the action-frame are vertically aligned, and
4) the object marked by the action-frame has a clear top,

then pick up the object marked by the action-frame.

If 1) the hand is empty,
2) the attention-frame is on a green block,
3) the attention-frame and the action-frame are vertically aliglied, and
4) the object marked by the action-frame is not clear,

then move the action-frame to the top of the stack.

Figure 4.3: A fixed set of rules that reliably solve the GB-task. Depending upon
the distribution of problem instances (piles), this strategy may or may not be
optimal. In any case, it is nearly optimal.
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such a policy. The GB-task can be solved by 1) keeping the robot's hand clear
- so that it can pick up blocks as needed, 2) using the attention-frame to locate
the green block, 3) when not involved in placing an object, move the action-frame
to the top of the stack containing the green block, and 4) pick up any clear block
from the green stack - either to decrease the stack height or to pick up the green
block.

4.3 Perceptual Mappings

Let us study the properties of an active perceptual system in more detail, Percep-
tion can be defined as the process of mapping situations in the world onto states
in an agent's internal representation. Following this definition in the most gen-
eral sense, the perceptual system can include all the sensory and computational
processes that provide information to the internal representation. This could in-
clude short term memory processes used to maintain and recall information about
previous events. However, we will restrict ourselves to agents whose internal rep-
resentations are defined solely in terms of their immediate sensory inputs. In
this case, the agent's sensory system performs the mapping from situations in the
world to internal states.

Since in general there are an unbounded number of different situations in the
world (i.e., every moment is unique in some respect), and we are concerned with
systems that have only a finite number of internal states, some internal states must
necessarily represent multiple world states. We call this overloading of internal
states perceptual reduction. Perceptual reduction is fundamental to perception,
it cannot be avoided. However, it can be helpful or it can be a hindrance. In
particular, if the perceptual mapping is chosen correctly, then each internal state
will represent situations that are functionally equivalent. Conversely, if the map-
ping is chosen incorrectly then the equivalence class associated with some internal
states may contain situations that are functionally dissimilar. Under these cir-
cumstances, the internal state may say nothing useful about the current situation
with respect to the task. Agre has called the correct or useful overloading of
internal states passive abstraction [Agre, 1988]. We will adopt this nomenclature
and use the term perceptual aliasin9 to denote the inczorect (or unproductive)
overloading of internal states.

An example of passive abstraction for the GB-task is shown in Figure 4.4. In
this case, two different piles of blocks in the world, due to careful placement of
the action and attention frames, generate the same internal representation. The
equivalence class associated with this internal state consists of those situations
where:

1. the hand is empty.
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World state 1: R World state 2:

177  L777777
Internal _______________
representation: 1100000000010011010

Figure 4.4: An example of passive abstraction in the GB-task. In this case, both
world states share the same optimal action. In the figure the (+) represents the
location of the action-frame marker and the (*) represents the location of the
attention-frame marker.

2. a green block is covered by a red block that itself is clear (there may be

other blocks between the red and the green ones),

3. the action-frame marker is on the red block,

4. there are red, green, and blue blocks in the pile.

With respect to the GB-task, whenever this internal state is encountered the
optimal action to perform is grasp-object-at-action-frame. That is, situations rep-
resented by this particular sensory input vector are functionally equivalent with
respect to the the GB-task.

Notice how information about the other irrelevant blocks in the pile is not
encoded in the internal representation. Most of the irrelevant information (e.g.,
information about stacks other than the one containing the green block) is ab-
stracted out of the representation automatically. Nevertheless. this internal state
does encode some irrelevant information - in particular, the fact that the top
block is red and that there are blue, green, and red colors detected in the scene is
irrelevant.

Intuitively. an internal state is most useful when

1. the equivalence class associated with the state is as large as possible (i.e.,
the representation does not make irrelevant distinctions), and



World state 1: World state 2:

r/
Int~aal 00_0000100000000
reprertation: 11100

Figuie 4.5: An example of perceptual aliasing from the GB-task. In this case two
world states with different optimal actions generate the same internal representa-
tion.

2. all the situations ;,.: the wDorld represente.. -, a state are functionally equiv-
alent in terms of the actions required for opti'al control.

An exarrple of perceptual aliasing is shown in Figure 4.5. In this case, marker
placements are such that two functionally different situations generate the same
input, vector. The optimal action for the pile on the left is to move the action-frame
to the green block (more-action-fi ame-to-green), whereas, the optimal action for
the pile on the right is to pick up the marked red block (grasp-object-at-action-
frame). The trouble with this internal state is that, given only this information,
the decision syStem cannot distinguish between these two different cases and so
cannot be guaranteed to select the optimal action.

In systems with fixed (or passive) sensory systems, the burden of choosing
an appropria.- internal representation (and perceptual function) is placed on the
system's design,- Tne objective representations commonly used in Al are pas-
sive representations. In this case, every potentially relevant object is identified,
nar-ed, and objectively represented. Also, they are typically intended to be gen-
eral purpose so that the robot can perform a range of tasks in the domain. Ob-
jective representations tend to be bad representations, not so much because they
confuse situations that are functionally different, but because they differentiate
between situations that are functionally equivalent. In objective representations,
each internal state encodes too much information for most tasks. This complicates
decision making by forcing the agent to do its own abstraction.
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Figure 4.6: Generally the mapping between external world states and the agent's
internal representation is many-to-many; a) shows how two different situations

can generate the same internal state and b' shows how one situation may have
more than one internal representation.
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To obtain a more appropriate representation, it is necessary to consider the
specific task to be performed by the robot and the functional equivalence classes
it entails. This can be a problem if the task is initially unknown or changes
over time. However, active perception can address this problem by providing an
efficient means for implementing a wide range of perceptual mappings. Of course,
in the case of active perception, adaptive control involves the learning of both
the overt actions needed to perform the task and the perceptual actions needed
to sense and represent the world properly with respect to the task. Examples of
the many-to-many mappings afforded by the block stacking robot's sensory-motor
system are shown in Figure 4.6.

4.4 A Formal Model of Embedded Learning

Let us now formalize concepts such as "the world," "the agent," "the sensory-
motor system" and the "decision system" in a general model. The model, shown
in Figure 4.7, extends a model proposed by Kaelbling [Kaelbling, 1989] by explic-
itly representing the dynamic relationship between external world states and the
agent's internal representation. Given this model we can formally describe the
decision problem facing the embedded controller.

4.4.1 The External World

The external world is modeled as a discrete time, discrete state, Markov decision
process and is described by the tuple (SE, AE, TE, RE). The 'E' subscript is used
to emphasize that this is a model of the environment external to the agent. The
model is a mathematical abstraction of the physical world that collapses the in-
finite complexity of the real world onto a finite model. However, the model is
assumed to capture the essence of the task to be performed by the agent (or put
another way, the Markov model defines that task to be performed). Of course,
the model is just a mathematical abstraction, and the agent (and especially the
embedded decision system) has no knowledge of it.

4.4.2 The Agent

Our model of the agent has two major subsystems: a sensory-motor subsystem and
a decision subsystem. The sensory-motor subsystem implements three functions:
1) a perceptual function P; 2) an internal configuration function I; and 3) a motor
function Al. The model of the sensory-motor system formalizes the relationships
that exist between 1) internal states and actions and 2) the external world model.
On the sensory side, the system translates world states (i.e., states in the external
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Figure 4.7: A formal model for an agent with an embedded learning system and
an active sensory-motor system. The table summarizes the functions implemented
by each of the model's components.
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model) into the states in the agent's internal representation. Since perception
is active, this mapping is dynamic and dependent upon the configuration of the
sensory-motor apparatus. Let S be the finite set of possible internal states, and C
be the set of sensory-motor configurations. Then, the relationship between world
states and the agent's internal representation can be described by a perceptual
function P, which maps world states SE and sensory-motor configurations C onto
internal states Si (i.e., P : SEx C -+ Si). Notice that in a real system, the physical
sensory system implements a mapping from the physical world (an infinite number
of real world situations) onto the agent's internal representation S1, but in the
model, the perceptual function, for a given configuration, maps states in SE onto
S1.

On the motor side, the agent has a finite set of internal motor commands,
A1, that affect the model in two ways: they can either change the state of the
external world (by being translated into external actions, AE), or they can change
the configuration of the sensory-motor subsystem. As with perception, the config-
uration of the sensory-motor system modulates the effects of internal commands.
This dependence is modeled by the functions M and I, which map internal com-
mands and sensory-motor configurations into actions in the external world and
into new sensory-motor configurations, respectively (that is, M : Al x C -. AE
and I : Al x C - C). M is called the motor function and I is called the Config-
uration function. Internal commands that change the state of the external world
or that change the sensory-motor configuration so as to affect the motor mapping
are called overt actions and are denoted by the set Ao. Commands that change
the configuration of the sensory-motor system, but leave the motor mapping un-
changed, are called perceptual actions and are denoted by the set Ap.

The other component of the agent is the decision subsystem. This subsystem
is like a homunculus that sits inside the agent's head and controls its actions.
On the input side, the decision subsystem has access to reward generated by the
external world and to the agent's internal representation, but not to the state of
the external world. Similarly, on the motor side, the decision subsystem generates
internal action commands that are interpreted by the sensory-motor system.

4.4.3 The Internal Decision Problem

There are two decision problems that need to be distinguished at this point: the
external decision problem and the internal decision problem. The external decision
problem is defined by the Markov decision process used to objectively describe
the external world (or the external task). The internal decision problem is the
control task facing the embedded decision system and is defined by the tuple
(S, Al, T 1, RI) where

S1 is the set of possible input values generated by the sensory-motor system,
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Al is the set of internal action commands,

Ti is the internal transition function which describes the effects of internal action
commands on the next internal state, and

RI is the internal reward function.

In this model, the internal transition and reward functions in general depend
upon the state of the external world and the configuration of the sensory-motor
system. The internal transition function can be expressed in terms of the external
transition function, the perceptual function, and the motor function as follows:

T,(x,aIxE,c) = P(T(xE, M(a,c)),c) (4.1)

where T(x, a IE, c) denotes the result of executing internal action command a in
internal state x, given that the current world state is xE and the current sensory-
motor configuration is c. Similarly, the internal reward function can be expressed
as

RJ(x, alxE,c) = RE(XE, M(a,c)). (4.2)

The objective of the embedded decision system is to learn a control policy (a
mapping from internal states to internal motor commands) that maximizes the
expected future return. Notice, however, that the internal decision problem may
or may not satisfy the Markov property since in general transitions and rewards
depend upon 1) the state of the external world, 2) the current configuration of the
sensory-motor function, and 3) the mappings implemented by the perceptual and
motor functions. As will be shown in the next chapter, active perception almost
invariably leads to decision problems that are non-Markov.

4.4.4 Modeling the GB-task

The GB-task can be formalized using this model. For the GB-task, the external
world can be defined as a Markov process whose state space consists of the set
of all possible piles of blocks. In this case, each state describes a unique pile of
blocks - much as in an objective representation. The set of actions AE consists
of actions for grasping and placing each and every block. The transition function
is deterministic and follows the standard dynamics used in block stacking. The
reward function is uniformly zero except for transitions that yield states where
the robot was holding a block, in which case the reward is R9.

The agent in the GB-task is defined as follows. The internal state space S, is
defined by the set of possible values for the input bit vector in Figure 4.2. The set
of internal actions Al are the actions listed on the right in Figure 4.2. The set of
configurations C corresponds to the set of possible placements for the markers on
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objects in the external world. The perceptual and motor functions are somewhat
harder to write down, but they define the mapping from piles of blocks in the
world to values of the input vector, and from internal action commands to actions
in the external "blocks world" model.
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5 Combining Active Perception
and Q-Learning

The first program written to learn the GB-task, called Meliora-I, takes a most
straightforward approach by directly applying 1-step Q-learning to the internal
decision problem described in Section 4.4. To our surprise, Meliora-I is unable
to learn to solve the GB-task consistently, and generally performs only slightly
better than random. In this chapter, we describe Meliora-l, document its poor
performance on the GB-task, and analyze its failure. The principal result of the
chapter is to show that the agent's that use standard Q-learning (and in general
reinforcement learning algorithms that use TD-methods) for the adaptive control
of an active sensory-motor system will almost always fail to learn reliable control
strategies. The poor performance of Q-learning is explained by introducing the
notion of an inconsistent internal state. Informally, inconsistent states are the
result of perceptual aliasing and arise any time the perceptual mapping is such
that two or more states with differing action-values in the external Markov model
get mapped onto the same internal state. Under these circumstances it is not
possible for the agent's internal action-value function to represent simultaneously
the different action-values for the confounded external states. Consequently, the
action-values for inconsistent internal states tend to reflect a sampled average of
the values for the confounded external states. These averaged values not only lead
to inaccurate estimates for the inconsistent states themselves, but also, through
the use of TD-methods, introduce errors in the action-value estimates for other
internal states. This results in inaccurate action-value estimates for the internal
decision problem and non-optimal, indeed unreliable, control policies.

5.1 Meliora-I

Meliora-l uses the 1-step Q-learning algorithm described in Figure 3.6. In this
case, the states seen by the controller are the values of the robot's input vec-
tor and the set of control actions is the robot's internal motor commands (see
Figure 4.2). In total there are 220 (or 1,048,576) internal states and 14 possi-
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ble actions. In Meliora-I a table is used to implement the action-value function.
The table contains one action-value estimate (an entry) for each state-action pair
for a total of 14,680,064 entries. This tabular approach is a particularly simple
method for implementing the action-value function; however, its simplicity serves
our purposes well. Even though more sophisticated function approximation tech-
niques that save space and provide generalization can be used (e.g., CMAC's,
neural networks, classifier systems), they too suffer from the same fundamental
difficulties caused by active-perception. Explicit representation of the action-value
function in the form of a table makes these interactions more apparent and easier
to explain.

5.1.1 The Experiment

The experiment with Meliora-I proceeded as follows. The experiment was com-
prised of a series of runs, in which the robot was sequentially presented with
1000 instances of the GB-task (i.e., 1000 trials). At the beginning of each run,
Meliora-'s action-value function was uniformly initialized to zero. On each time
increment, the agent cycled once through the control loop in Figure 3.6. This
loop involves choosing and executing an action, observing the state and reward
that result, and updating the action-value and policy functions.

Each instance (or trial) consists of a randomly configured pile of exactly 4
blocks with the pile always containing exactly one green block. Randomly select.
ing problem instances allows the system to get a good mix of easy and difficult
problems. An easy problem corresponds to one in which all four blocks are placed
on the table. In this case, the robot need merely fixate and directly grasp the
green block. A more difficult problem is one in which the green block is at the
base of a stack containing all four blocks. In this case, the robot must sequentially
unstack all three covering blocks before grasping the green one. If in any trial the
robot fails to solve the problem after nq, overt actions, it decides that the in-
stance is too difficult and moves on to the next trial. Limiting the amount of time
the robot spends on any given problem instance provides a convenient mechanism
for automatically filtering out instances that are far beyond the agent's capabil-
ities at a given point in time. This technique prevents the robot from becoming
hopelessly stuck on hard problems during the initial phases of learning.

5.1.2 Results

Because problem instances are selected at random, temporally adjacent trials may
vary widely in their difficulty. This results in solution time traces for single runs
that appear very noisy. To smooth out the performance curves and make them
easier to interpret, the solution time traces for multiple runs are averaged together
and plotted.
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Figure 5.1: The number of steps taken per trig by Meliora-! versus trial number.
Each point is averaged over 200 runs. Also shown are results for an optimal
controller and a random controller. Meliora-' performs only slightly better than
random and generally fails to reliably solve 1ll but the easiest instances of the
task.

Performance results for Meliora-I are sho~n in Figure 5.1. The figure shows
the average, over 200 runs, of the number of steps taken per trial for a i-quence
of 1000 problem instances. These results are i ,r nit - 30, a = 0.5, y = 0.9,
and p = 0.9.1 Also shown are plots for an agent acting randomly and an agent
following the near-optimal policy shown in Figure 4.3. The plots show that 1-
step Q-learning fails to learn the optimal policy (or a policy anywhere near it).
Meliora-I's performance shows a slight initial improvement, b.. At quickly levels
out at a performance that is only slightly better than random. By keeping track
of the problem instances Meliora-I reliably learns to solve, we noticed that it
manages only to learn the trivial problems in which the green block is initially
clear. The learning of these instances accounts for the system's initial performance
improvement. For all other instances, Meliora-I failed to learn a reasonable control
strategy. In particular, it never reliably learned to uncover the green block.

'Other experiments showed the performance to be insensitive to variations in the parameter
settings
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5.2 Definitions and Nomenclature

Before we get into the details of why Meliora-I cannot solve the GB-task, it is
useful to develop further our language for describing properties and relationships
between internal and external decision problems.

To begin, it is convenient sometimes to use a single variable to denote a state-
action pair. Thus, the term decision will be used as a synonym for "state-action
pair," and the variable d will be used to denote the state action pair (s, a). Using
this terminology, we say the action-value function is defined over the set of possible
"decisions," D = S x A.

Next, it is useful to define three sets that help to characterize the relationships
between states and decisions in the external and internal decision problems. Given
a formal description of an internal decision problem (SI, Al, T Rt) stated in terms
of an external model (SE, AE, TE, RE) and a sensory-motor model (P, 1, M, C),
define SRep(s') to be the states in the external model that for one configuration or
other of the sensory-motor system map into the internal state 3'. That is, SRep(s')
denotes the class of external states represented by s'. Formally, s E SRep(s') if
and only if there exists a sensory-motor configuration c E C such that P(s, c) = S'.
If s E SRep(s') then we say that s' represents s and that a is represented by s'.
Note that in general an internal state may represent many external states and an
external state may be represented by many internal states, depending upon the
configuration of the sensory-motor system.

Similarly, define DRep(d') to be the decisions in the external model that, for
one configuration or other of the sensory-motor system, map onto the internal
decision d' = (s',a'). Formally, d = (s,a) E DRep(d') if and only if there exists
a sensory-motor configuration c E C such that P(s,c) = s' and M(a',c) = a. If
d E DRep(d') then we say that d' represents d and d is represented by d'. Again in
an active sensory-motor system, these relationships are generally many-to-many.

Finally, define Cons(s, s') to be the sensory-motor configurations that map the
external state s onto the internal state s'. Formally, c E Cons(s, s') if and only if
P(s,c) = s'.

Given these definitions, it is now possible to introduce precisely the notion of
consistency. In particular, an internal decision is said to be consistent if every
decision it represents in the external model has the same optimal action-value.
Formally,

d' is consistent iff 3 kER VdE DRep(d') [Qj(d) = k], (5.1)

where QE(d) is the optimal action-value for the external decision d. An internal
decision that is not consistent is said to be inconsistent.

Similarly, an internal state is defined to be consistent if all of its corresponding
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decisions (state-action pairs) are consistent. Formally,

s' is consistent iff V,EAd' = (s',a') is consistent. (5.2)

The concept of consistency allows us to sharpen our heretofore intuitive defini-
tions of passive abstraction and perceptual aliasing. In particular, passive abstrac-
tion is the process of mapping, through perception, multiple external states onto a
single consistent internal state. Conversely, perceptual aliasing occurs when mul-
tiple external states are mapped onto a single internal state in a way that results
in an inconsistency.

5.3 The Effects of Perceptual Aliasing

Armed with these tools for describing various properties of internal decision prob-
lems, the poor performance of -step Q-learning on the GB-task can be explained,
and it can be shown that most existing reinforcement learning algorithms cannot
be used to learn to control agents with active sensory-motor systems.

The first observation to make about the internal decision problems of agents
with active perception is that they are rife with perceptual aliasing and inconsis-
tent internal states. Perceptual aliasing goes hand in hand with active perception
since the whole point of active perception is to provide a flexible means for selec-
tively sensing and ignoring selectively various aspects of the world. This includes
the possibility of ignoring relevant information, which in turn leads to percep-
tual aliasing. Therefore, the internal decision problem facing the controller of any
system that uses active perception will necessarily contain inconsistent internal
states. Indeed, since in most cases careful control of the sensory system is required
to register all of the relevant information, the vast majority of internal states are
likely to be inconsistent.

Another observation to make is that internal decision problems that contain
inconsistent internal states are necessarily non-Markov. This follows since, for
inconsistent states, knowledge of the current state is not sufficient to characterize
the dynamics of the process completely. Additional information, namely knowl-
edge of the hidden, external state, can be used to improve predictions about the
future of the process - a clear violation of the Markov property. This puts us on
shaky ground with respect to 1-step Q-learning since it has only been shown to
converge to the optimal policy for Markov decision problems. Indeed, as we shall
see, inconsistent states and non-Markov decision problems wreak havoc on 1-step
Q-learning.2

2When I saN " it has only been shown to converge for Markov decision problems", I do not
wish to minimize the significance of Watkins' convergence result for 1-step Q-learning. This
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The trouble with inconsistent internal states is that they prevent the embed-
ded decision system from accurately estimating and representing the true utility
of applying an internal actic~n at a given point in time. Given an inconsistent
internal decision d' = (s', a'), the single action-value maintained by the Q-learner,
denoted Qj(d'), cannot simultaneously represent the disparate action-values for
the external decisions in DRep(d'). This means that regardless of the value of
Q,(d') there will be points in time when the internal state is $ and Q1(s', a') will
not accurately reflect the true utility of executing the action a'. At these crucial
instants in time, the internal action-value estimate and optimal action-value for
the external decision it represents differ (or are inconsistent)! These events are
called utility aberrations.

Utility aberrations are certain to occur in systems with inconsistent internal
states and can impair decision making both locally and globally.

A local impairment occurs when, because of an inability to accurately repre-
sent the action-values of an inconsistent state, a non-optimal value is incorrectly
assigned to the policy value of the inconsistent state. A local impairment can
occur if either an optimal or non-optimal decision is inconsistent. If the optimal
decision for a given state is inconsistent, and if the action-value estimate for that
decision dips below the action-value estimate for a non-optimal action, because
of a utility aberration, then the agent will incorrectly prefer the non-optimal ac-
tion over the optimal one. Similarly, if a non-optimal decision is inconsistent and
the utility aberration is such that its action-value estimate is increased over the
action-value for the optimal decision, then the agent will incorrectly prefer the
non-optimal action.

Utility aberrations can also have global effects, leading to non-optimal behavior
in states that are otherwise consistent. Global impairments occur when inaccurate
utility estimates from inconsistent states are used to update the action-value esti-
mates for other (potentially consistent) states. For instance, in 1-step Q-learning,
the action-value estimate for the state-action pair executed at time t is updated
according to the rule,

QI(s,, at) ( a)Q(st, at) + a[rt +

where Ul(sg+,) = maXEAj Qi(st+i,a). Unfortunately, if sj+j is inconsistent then
Ul(sz+i) may be inaccurate with respect to the current situation in the external
world (due to a utility aberration) and the 1-step estimator, rt + '/Uj(st+1 ), may
be incorrect, thus introducing an error into Q,(st,at). This error may now lead

is an extremely general result and one of the few formal theorems in reinforcement learning.
Indeed, Markov models are the foundation of most work on sequential optimization problems.
Non-Markov models, because of their mathematical intractability, tend to be at the fringe.
Unfortunately, active perception invariably leads to Non-Markov models. Therefore, we have no
choice but to try to deal with them.
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to non-optimal behavior in state st and an inaccurate estimate of UI(st), which
in turn may infect other states, and so on.

5.4 A Simple Example

To illustrate the extent to which perceptual aliasing can interfere with Q-learning,
let us consider a simple example. Consider the task shown in Figure 5.2. In this
task, the exteral decision problem has a state space containing eight states,
SE = {s , ss,,ss , g}; two actions, AE = {aa, }; and a deterministic
transition function, shown in Figure 5.2a. The goal of the external task is to
enter the goal state 9, whereupon the agent rec-ives a fixed reward RE(.9) = 5000.
Non-goal states yield zero reward, RE(Sk) = 0 for k = 0 to 6.

The optinal value function for the external task, denoted Vj, is an expo-
nentially decreasing function of the distance to the goal. That is, Vi(s) =
RE(gh(d(s)- ), where d(s) is the distance (in steps) from state s to the goal.
The optimal policy, 7rk, corrosponds to choosing the action that minimizes the
distance to the goal. In this case, the optimal policy requires the agent to moving

right (a,.) at every opportunity (i.e., for all s E SE, r1(s) = a,). Notice that
the optimal solution path for a given trial traces out a trajectory where V;(xt)
is monctonically increasing in time, and that the optimal policy corresponds to
performing a gradient ascent of Vj. This result is illustrated in Figure 5.3a, which
plots Vktx,) versus time for a trial that begins in state so at time t = 0 and follows
the optimal trajectory to g at time t = 7. When applied directly to this problem,
1-step Q-1earning can easily learn the optimal policy. However, let us introduce
an inconsistency and see what happens.

Consider the internal decision problem that results when the agent's sensory-
motor system implements a petceptual n apping that is fixed, one-to-one, and
onto except for states S2 and ;.5, which get mapped onto the same internal state,
s2,5. That is. let Si = {s0,s,,s s,sss,' } , where except for s', s (and
g') represents world state s, (and g). Also let the motor mapping be such that
A., {a',a'}, where a' and a' map to al and a,, respectively. The transition
diagram for this internal decision problem is shown in Figure 5.2b. Note that this
problem is non :Markov since the effects of actions are not independent of the past
but depend upon the hidden, unperceived external state. Also note that a fixed
optimal policy for this task is to always app:y the action a' .

1-step Q-learning carnot learn the optimal policy for this task. In particular, if
tht agent's policy is initialized to thc optimal policy and the controller is fixed so
that the system follows the optimal policy with probability p = 0.99 and chooses
a random action otherwise, and if the system is ru. for many trials and allowed
to estimate the optimal va,ue and action-value functions, then the following is ob-
served. First, since the value and action-value estimates ,u, and Q, respectively)
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Figure 5.2: Transition diagrams for a simple decision task: a) the transition dia-
gram for the external decision problem, b) the transition diagram for the internal
(or perceived) decision problem when interpreted through a sensory-motor system
with perceptual aliasing.
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Figure 5.3: Plots of utility versus time as the agent traverses from state so at
t = 0 to g at t = 7 (for -y = 0.8): a) the utility for the external decision problem,
Vj; b) the utility estimates for the internal decision problem, UI, obtained by the
1-step Q-learning algorithm.
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are based on expected returns, for the state S2,5, they take on values somewhere
between the corresponding values for S2 and S5 in the external decision problem.
That is,

V;(s2) :5 UI(s'2, ) <5 V;(s5), (5.3)

Q(s2, ar) :5 Q,(4,,a') _ Q(ss, a,), (5.4)

and

Q(s2,a,) Qi(s,.5 ,a') < Q(ss, at). (5.5)

Actually, the estimated action-value function does not even converge to the true
sampled average of the returns observed. This follows since to update its action-
value function, the agent uses a 1-step estimator which enforces only local con-
straints on the values estimated. If the learning rate is gradually decreased with
time, the action-value function estimated by the agent converges to the values
that satisfy the following local relationships:

Ql(s', a') = R(g') + jO = 5000 (5.6)

Q,(s',5 ,a') - f,[0 + yU, (s')] + f2[0 + -yU,(s')] (5.7)
Q,(s', a') = 0 + -jU,(s' 5) (5.8)

Qj(s3, ar) = 0 + yUj(s4) (5.9)
Q,(s',a') = 0 + -yU(s'.) (5.10)

QI(so,a ) = 0 + yUj(s) (5.11)

Q,(s'. a') = 0 + yUj(s',,) (5.12)

Q,(s , a ') = f10 + 'U(s )] + f 0[ + -U,(s,)] (5.13)

Q,(s',a) = 0 + 7 U,(st) (5.14)

QI(S3, a) = 0 + -fU(S25 ) (5.15)

Q(s',a',) = 0 + -t U(s') (5.16)

QI(soa") = 0 + YU,(so) (5.17)

where U(x) = maxaE{a;,) QI(X, a).

In Equation 5.7, f, and f 2 are the fraction of times the application of a' in
state s 5' results in the next states being s' and s', respectively. Similarly, in
Equation 5.13, fl and f2 are the fraction of times the application of a, in state
'results in states s' and s,

$2,5 r 4, respectively. If trials always begin in state s', then
f, = f2 = fl = f2 = 5 0 (X and the values for the utility and action-value functions

will converge on the values shown in Table 5.1. Also shown in the table are the
sampled utility and action-values (Vs and Qs, respectively), obtained by actually
measuring and averaging the returns received over many trials (instead of using a
!-step estimator). Notice that the sampled averages match the optimal values for
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Ut(s) 1882 2352 2352 2352 2941 5000
Q1(s,a') 1506 1506 2352 1882 1882 2352
Q(s,a,) 1882 2352 1882 2352 2941 5000.H

Vs(s) 1310 1638 2560 3200 3024 5000
Qs(s, a') 1048 1048 1310 1638 1935 3200H
Qs(s,a') 1310 1638 2560 3200 3024 5000 1

Table 5.1: The utility and action-value functions estimated by the 1-step Q-
learning algorithm and the true sampled utility and action-value functions. The
estimated functions do not match the true sampled values since they are obtained
by satisfying the local constraints imposed by the corrected 1-step estimator. The
estimated utility and action-values are denoted U1 and Q1, respectively, and the
sampled utility and action-values are denoted Vs and Qs. The values shown are
for y= 0.8.

the external decision task except for states s 2 and ss, where utility aberrations
occur. In this case,

Vs(s',s) = 1/2V;(S 2) + 1/2V;(s5) (5.18)

Qs(s', 5,a') = 1/2Q (S2,al) + 1/2Q(s 5 ,al) (5.19)
Qs(s,.s, a') = 1/2Q(s 2,a,) + 1/2% (ss,a,). (5.20)

Also notice that the utility and action-values estimated by 1-step Q-learning,
except for state s6 , do not match either the external or the sampled utility and
action values. This discrepancy arises because estimates for all the states up to
s5 (i.e., s', s, s',2 5. s3, and s') in the internal task are either directly or indirectly
dependent upon the utility estimate for ss. However, since S2 and s5 are indis-
tinguishable, their internal action-value estimates are constrained to be the same.
Thus, a utility aberration occurs whenever the world is in s5. This inaccurate
utility estimate in turn gets propagated back to all the states that precede it.

The next important observation to make is that the utility function (either
learned or measured) for the internal decision problem is no longer monotonically
increasing as the system traverses the optimal solution trajectory. This anomaly
is shown graphically in Figure 5.3b, which plots U1 (x,) as a function of time as the
system follows the optimal trajectory from s' to g'. The plot shows that a utility
aberration occurs at I = 2 when the system first encounters s',. In reality, the
world is in state S2 and the true expected return is Vj(s 2) = 2048 (for -Y = 0.8).
However, because s2 and s5 are indistinguishable in the internal representation,
the internal decision system overestimates the expected return at t = 2. Similarly,
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another utility aberration occurs the second time s', is encountered, at t = 5 when
the world is in state s5 . In this case, U,(s',5 ) underestimates the expected return.

If we relax our hold on the decision policy and allow the system to adapt,
we find that the optimal policy is unstable! Not only is the system unable to
find the optimal policy, it actually moves away from it. In general, the system
will oscillate among policies, never finding a stable one. The instability can be
understood by considering the effect of utility aberrations on the policy. Recall
that in Q-learning the system locally adjusts its policy in order to maximize the
expected return. Thus, after running the agent with a fixed policy for many
trials and then releasing it, the policy value for state st will be changed so that
the system tends to take actions that move it back to s',5 instead of forward to
s' (since Q(s', a') > Q,(s', a)). The large utility value for state s',5 acts as an

attractor for nearby states, such as s', and causes them to change their local policy
away from optimal. An intuitive way to understand the problem is to consider a
local homunculus that sits at s' and can see the utilities of its neighbors. From
his point of view, s', looks more desirable than s' since once the system is in s'
it can execute a, which often leads to s' (one step from the goal). On the other
hand, choosing the action which leads to s' leaves the system still three steps from
the goal. From the homunculus' point of view, going to s',,, is on average better
than going to s'. What the homunculus cannot perceive (because of perceptual
aliasing) is that going from s' directly to s',5 always returns the real external world
to state s2, which cannot reach s6 directly. The problem is that the homunculus
cannot distinguish between s2 and s5 , as they are both represented by s', and it
erroneously makes the Markov assumption - that the effects of actions depend
only upon the current perceived state.

The utility aberrations are also unstable since they are based on a running
average of the expected returns. If, because of policy changes, s5 is rarely visited,
the aberration at s 2 will disappear. Unfortunately, as soon as the policy is changed
so that s 5 begins to be encountered more frequently, the aberration reappears, and
so on. Thus, the system oscillates from policy to policy, unable to converge on a
stable one.

5.5 Looking Back at Meliora-I

It is now easy to see why Meliora-I cannot learn to solve the GB-task. In Meliora-
I, the internal state space is rife with inconsistencies. Indeed, the only time the
internal state is consistent is when one of the markers (either the action or the
attention-frame) is on the green block. All other configurations of the sensory-
motor system generate inconsistent internal states.

An example of an inconsistent internal state is shown in Fig,!.re 5.4. This figure
shows four external states, each with different optimal utilities, that under appro-
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Figure 5.4: Four different external states, each with different utilities, can generate
the same internal state. In this case, the distance to the goal state for each of
these states is 15, 12. 7. and 2 steps, respectively. The utility estimate for the
internal state tends to reflect an average of the utilities of the external states it

represents. If we just consider these four external states (indeed the equivalence
class for this internal state contains many more external states), then the utility
of the internal state would correspond roughly to a state approximately 9 steps
away from the goal. \Vhen representing external states like those on the top,
the internal state tends to overestimate the utility of the situation (aberrational
maxima) and when representing situations like those on the bottom, the internal
state tends to underestimate the utility of the situation (aberrational minimum).
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priate conditions generate the same internal state (shown below). The utility and
action-values for this internal state tend to reflect an average of the utilities and
action-values for the external states it represents. When encountered in opera-
tion, it is unlikely that this state's utility estimate will match the actual utility of
the current external state - sometimes it will overestimate and sometimes it will
underestimate.

To see how this inconsistent state interferes with decision making, consider the
situation shown at the top in Figure 5.5. In this case, the green block is covered
by three blocks, the action-frame marks the top block, and the attention-frame
marks the green block. The internal state generated by this arrangement is con-
sistent and shown directly below the pile. Consider the result of performing two
different actions. First, suppose the agent performs the grasp action. This action
results in the external and internal states shown on the left. The internal state
for this situation is also consistent. Now suppose that instead of performing the
grasp action the agent performs the move-attention-frame-to-table action. This
action results in the external and internal states shown on the right Figure 5.5.
In this case, the internal state is the inconsistent state from Figure 5.4. Even
though the utility of the external state on the left in Figure 5.5 is greater than the
external state on the right (a minimum distance of 16 versus 14 steps), Meliora-I
prefers move-attention-frame-to-green over grasp-object-at-action-frame. This fol-
lows since the utility estimate for the internal state on the right, due to averaging,
tends to be higher than the utility of the consiste,, internal state on the left.
The situation on the left corresponds to a state of knowledge in which the agent's
internal state encodes the truth about the utility of the world, whereas the situ-
ation on the right corresponds a state of ignorance. When viewed by an outside
observer, Meliora-l appears to take an "ignorance is bliss" approach to control.
That is, when it encounters 4, situation in the external world where it discovers
the utility is low (i.e., a great deal of work must be done to obtain some reward),
instead of gritting its teeth and getting on with it, it prefers to ignore the problem
by focusing its attention elsewhere (i.e., since states of ignorance appear to be
better off on average than states that are known to be far from the goal).

5.6 The Long Arm of Perceptual Aliasing

The difficulties caused by perceptual aliasing and inconsistent internal states are
not unique only to 1-step Q-learning. Indeed, any reinforcement learning algo-
rithm that uses any form of truncated corrected return is subject to the detri-
mental effects of perceptual aliasing. This includes the whole family of Q-learnir.g
algorithms, algorithms based on temporal difference methods, and the bucket
brigade algorithm commonly used in classifier systems.
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Figure 5.5: Three pairs of external and internal states from the GB-task. External
states are depicted as piles, and internal states are depicted as bit vectors. The
+ indicates the position of the action-frame; the * indicates the attention-frame.
At the top is a situation in which the attention-frame is bound to the green block
and the action-frame is bound to the top block in the stack; the corresponding
internal state is consistent. On the left is the situation that results from executing
the optimal action, 9rasp-at-action-frame in the top state; this internal state is
also consistent. On the right is the situation that results from executing the non-
optimal action miove-att ention-frame- to- table; this internal state is inconsistent,
and, due to utility aberrations, tends to have a higher utility estimate than the
internal state on the left.
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Also, as previously mentioned, perceptual aliasing always accompanies adap-
tive systems that use active perception since in general a flexible sensory-motor
system can always be configured to ignore relevant information. Indeed, inconsis-
tent states are likely to be pervasive since in many cases only careful configuration
of the sensory-motor system will lead to consistent internal states. For instance,
in the GB-task, consistent internal states are achieved only when the green block
is marked. All other configurations lead to inconsistencies.

Finally, the negative effects of perceptual aliasing need not arise only in systems
with active perception. In general, perceptual aliasing accompanies all abstraction
or generalization mechanisms - that is, any time it is possible to ignore infor-
mation that is relevant to decision making and utility estimation. For instance in
an example similar to the one described in Figure 5.2, Grefenstette [Grefenstette,
1988] has shown how strength averaging in the rules of a classifier system prevents
the system from learning an optimal control strategy. In this case, rules that match
multiple world states (allowed to improve generalization) exhibit perceptual alias-
ing and, as a result, are vulnerable to inconsistencies and inaccurate utility esti-
mates. Other, similar examples of perceptual aliasing have been described recently
by Chapman and Kaelbling [Chapman and Kaelbling, 1991] and Tan [Tan, 1991a;
Tan, 1991b].
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6 Learning Consistent
Representations

This chapter describes Meliora-II, a program that successfully learns the GB-task
[Whitehead and Ballard, 1990; Whitehead and Ballard, 1991a]. The basic idea
underlying Meliora-Il is to learn and use an internal representation that is com-
plete and consistent, Instead of freely mixing perceptual and overt actions in a
monolithic controller that permits inconsistent states in the internal representa-
tion, Meliora-Il divides control into two distinct phases: state identification and
overt control. During state identification, a consistent internal state is generated
by executing perceptual actions in order to configure the sensory-motor system
properly. This consistent internal state is then made available to an overt con-
troller, which generates the next overt action. Both the state identification and
overt control processes are adaptive. The state identification module is adapted
when it is found to generate internal states that are inconsistent. The overt con-
trol module is adapted based on rewards gained through interactions with the
world.

In Meliora-II overt control is achieved by using a slightly modified version
of 1-step Q-learning, which aims to learn the internal equivalent to the external
optimal policy. State identification is achieved by learning a perceptual policy
that maps input vectors into perceptual actions. To generate an internal state, a
sequence of perceptual actions is performed and a set of candidate internal states
(state vectors) is generated. One of these internal states is then chosen to rep-
resent the current external world state. The detection of inconsistent internal
states, used to update the perceptual policy, i3 accomplished by monitoring the
sign in the estimation error in the 1-step Q-',earning rule. These specific tech-
niques are adequate for Meliora-II and the GB-task; however, other more general
techniques exist as well. In general, Meliora-Il represents a specific example of a
general approach to the adaptive control of perception and action that we call the
Consistent Representation (or CR) Method. Algorithms and architectures based
on this method all share the same basic idea, which is to break control into state
identification and overt control and to generate an internal representation that is
consistent at each point in time. After describing the specific algorithm used by



Meliora-II and some experimental results, the discussion turns to the CR-method
in general. This discussion includes a description of the basic architecture of sys-
tems that use the CR-method; a review of Meliora-Il in terms of this architecture;
a discussion of some alternatives to the algorithms used in Meliora-II; and a brief
review of two other systems that also employ the CR-method. The chapter con-
cludes with a discussion of the limitations of Meliora-Il and of the CR-method in
general.

6.1 Meliora-II

Meliora-lI represents our solution to the problem of perceptual aliasing. That
is, Meliora-II's decision system is designed specifically to be embedded within an
agent with an active sensory-motor system and to control perception actively to
overcome the negative effects of perceptual aliasing.

The decision system used in Meliora-.1I is based on three tenets:

1. In active perception a world state can be represented by multiple internal
states, one of which is usually consistent. That is, if the agent looks around
enough it will eventually attend to those objects that are relevant to the
task, and the internal state associated with that sensory configuration will
be consistent. Our algorithm depends on the existence of one consistent
internal state for each world state.

2. Inconsistent states disrupt the decision system's ability to learn by promising
inaccurate estimates of the expected return. Detecting inconsistent states
and eliminating their participation in decision making and action-value es-
timation minimizes their negative effects.

3. If the world is deterministic, then inconsistent states will (because of averag-
ing) periodically overestimate the utility of the actual world state, whereas
the incidence of overestimation in consistent states can be made to diminish
with time. Therefore, inconsistent states can be detected by monitoring the
sign of the estimation error in the 1-step Q-learning rule, Equation 3.40.

6.1.1 The Overt Cycle

The decision procedure used by Meliora-lI is called the Lion algorithm and is
outlined in Figure 6.1. The main loop in the decision procedure is the overt cycle,
which concerns itself with choosing overt actions in an attempt to maximize the
expected future return. Embedded within the overt cycle is a perceptual cycle
(the identification stage). After each overt action, the system executes a sequence
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Overt Cycle:
1) Execute Perceptual Cycle and generate St, a set of internal

representations for the current world state.
2) Choose an internal state, the icon, to represent the current world state by selecting

the state with the largest overt utility estimate:
lion = argmax s, [V(s)].

3) Estimate the utility of the current world state, s,: VE(st) *- V,(lion).
4) Execute Update.Overt.Q.Estimates based on VE(s,), r,.i, oacII-I and lione-;

where rt is the reward received at time t, oact,. is the last overt action executed,
and liont- 1 is the internal state selected to represent the previous world state.

5) Choose the next overt action to execute:
With probability p follow policy f.(lion),

oact - arg maxa'EAo[QI(lion,a)].
Otherwise choose randomly: oar! - Random(Ao)

6) Execute oact to obtain a new world state and a reward ri.
7) Go to 1).

Update.Overt-Q.Estiniates:
1) Estimate the error in the lion's action-value: El,0,, - (r, 1 + vV(81)) - Q,(lione.., oaci.. 1 ).
2) Update the action-value of the lion:

If (El,,,. < 0) then the lion is suspected of being inconsistent, so suppress it:
Qj(h1on I. 1, oact ) - 0.0

Else update it using the standard -step Q-learning rule:
O,(haonq- 1,oact- 1) - Qt(liont-., oacl,_ 1) + aE10 .

3) Update non-lion internal states:
For each s E S,I and s 0 lion,-, do:

Let E, = re- + I VE(st) - Q1(s, oactI- )
If (E, > 0) then s is suspected of being inconsistent, so suppress it:

QI(s,oacti. 1 ) - 0.0
Else update it using the lion's error:

Qj(s, oacte-1 ) - Qt(s, oact.l 1) + a'E, o. - where a' < a.

Perceptual Cycle:
1) Initialize S: St - {s,), where s, is the current internal state.
2) Do n times: (in our implementation n = 4)

i) Select the unext perctptual action:
With probability p' follow the perceptual policy: pact - M80,
where s, is the current input vector and fp(s,) = argMaxEAp[Q1(sC,a)].
Otherwise choose randomly: pact *- Randorn(Ap).

ii) Execute pact to obtain a new internal state s'.
iii) Update the action-value estimate for the perceptual decision (sc, pact):

QI(s¢, pact) Q- Q(s, pact) + a(V,(s') - Q,(s¢, pact)).
iv) Add s' to S, S, = S3 U {s')
v) Update s,: sc - s'.

3) Return S,

Figure 6.1: An outline of the decision procedure implemented by Meliora-Il. This
procedure is called the lion algorithm and is designed specifically to overcome the
difficulties caused by perceptual aliasing.



of perceptual actions (the perceptual cycle) in an attempt to identify an internal
state that consistently represents the current external state. The input vectols
observed during the tth perceptual cycle define a set of candidate internal states,
St. Each of these internal states corresponds to a different view (representation)
of the current external world. The state chosen to represent the current situation
is called the lion' and is simply the internal state in St with the largest utility
estimate. That is,

lion = arg max[V(s)] (6.1)

where Vj(s), the overt utility estimate, is the maximum overt action-value for
state s. That is,

V,(s) = max[Q,(s, a)). (6.2)

Once the lion is selected, the utility of the current external state, Vg(xg), is esti-
mated using the overt utility estimate for the lion, VI(lion). As will be described
below, the algorithn for adjusting the action-value estimates for overt actions
severely lowers the values for inconsistent decisions. Consequently, the lion tends
to be consistent and overt control tends to be based on action-value estimates
that accurately reflect the true state of the external world.

Once 1 (xt) has been estimated, action-value estimates for the previous overt
action are updated (as described below). The overt cycle then continues by se-
lecting an overt action to execute. With probability p, the system chooses the
action consistent with its overt policy ,; the rest of the time it chooses an overt
action at random. When following policy, the action executed is simply the overt
action that maximizes the action-value function for the lion:

ouet = arg max[Q,(lion,a)]. (6.3)
aEAo

Once an overt act ion is chosen, it is performed and the overt cycle begins anew.
Figure 6.2 shows a cartoon of the decision system in action. The large nodes rep-
resent external world states, and the arcs between them overt actions. Embedded
within each large node is a subgraph representing the perceptual cycle. The nodes
in this graph correspond to internal states seen by the embedded decision system,
and the arcs between them correspond to perceptual actions.

6.1.2 Learning a New Action-Value Function

In Dynamic Programming and Q-learning the action-value of a decision, for a
given policy, is defined as the return the system expects to receive given that it
performs that decision and follows the policy thereafter (cf. Equation 3.13). How-
ever, for inconsistent internal decisions this definition leads to inaccurate action-
values (utility aberrations). Meliora-II uses a modified learning algorithm that

'Since it takes the lion's share of credit or blame for the agent's performance.



is based on Q-learning but incorporates a competitive component. This compo-
nent tends to suppress the action-values of inconsistent decisions while allowiLg
action-values for consistent decisions to take on their nominal values. This al-
lows consistent states to be selected during state identification and provides the
overt cycle with action-values that accurately reflect the expected returns of the
underlying external decision problem.

The algorithm for updating Qj is based on the following ideas: 1) the lion
state chosen to represent the curr..nt world state should be consistent and its
actiui-values should take on theit nominal values; 2) the action-values for other
internal states in St that might otherwise be used to represent the current state do
not need to have their action-values updated as long as the action-values for the
lion are accurate; 3) any time a decision is inconsistent it should be detected and
its action-value should be suppressed. Ideally, the decision system shhould learn
a new action-value function in which the action-values of consistent decisions
take on their corresponding values for the external task and the action-values for
inconsistent decisions are zero:

r O Qj(s, aE) if (s, a) is consistent
Q *(s, a) = 0 otherwise (6.4)

where (SE, aE) E DRep(s, a). Since rewards are always positive in the GB-task,
Qj is uniformly greater than zero. Thus, when using Q'de1 to define its overt
policy Meliora-II would never base its decision on an inconsistent internal state
and would always choose the optimal overt action.2

In Meliora-Il, inconsistent decisions are detected -s follows. If at time t the
action-value for any decision d = (s, a) where s E St, is greater than the estimated
return obtained after one step, rt -t- yVi(lioni+i), then the decision is suspected of
being inconsistent and its action-value is suppressed (e.g., reset to zero). Actively
reducing the action-values of lions that are suspected of being inconsistent gives
other (possibly consistent) internal states an opportunity to become lions. If
the lion does not overestimate, its action-value is updated using the 1-step Q-
learning rule. To prevent inconsistent states from climbing back into contention
and competing for lionhood, the estimates for non-lion decisions in St are updated
at a lower learning rate and only in proportion to the error in the lion's action-
value. Also, any time a decision's action-v, we overestimates the 1-step return,
it is suppressed. This algorithm works for external tasks that are deterministic
and have only positive rewards (e.g., the GB-task). For these cases, the property
that allhws the algorithm to work is that inconsistent decisions will eventually
overestimate their action-values (due to utility aberrations). Thus, inconsistent
states will eventually be suppressed. On the other hand, it can be shown that a

2Notice that this L'efinition of optimnal does not account fo, the cost of perceptual actions.
liere optimality is defin ,d in terms of the external decision problem.



consi.tent lion is stable if every external state between the lion and the goal (or
every state in the limit cycle of the optimal policy) also has consistent lions with
accurate action-value estimates.3 Thus, inconsistent decisions are unstable with
respect to lionhood while consistent decisions eventually become stable. The steps
for updating action-values are shown in Figure 6.1 under the Update-Overt-Q-
Estimates heading.

6.1.3 The Perceptual Subcycle

The steps in the perceptual cycle are sketched in Figure 6.1 under the Percep-
tual Cycle heading. The objective of the perceptual cycle is to accumulate a set
of internal representations of the external world, one of which is consistent. This
goal is achieved by executing a series of perceptual actioas. In Meliora-II the per-
ceptual cycle executes a fixed number (n = 4) of perceptual actions. This number
has proven adequate for the GB-task, but it is easy to imagine variable length per-
ceptual cycles in which the cycle either terminates as soon as a consistent internal
state is found or increases when inconsistent states are encountered. The algo-
rithm for selecting actions within the perceptual cycle is similar to the algorithm
for choosing overt actions in the overt cycle. With probability I/ (e.g., p' = 0.9),
the system follows its perceptual policy fp; otherwise, it selects a perceptual action
at random. When following policy, the action selected is the perceptual actiou
with the maximal action-value for the currently perceived input vector:

f(sp) = arg max[Q,(sp, a)] (6.5)

aEAp

where sp is the currently perceived input vector.

The rules for updating action-values for perceptual actions are shown in Fig-
ure 6.1 within the Perceptual Cycle procedure. These updating rules lead to
action-values that average the overt utilities of the internal states that result from
executing a perceptual action. Since consistent states tend to have higher overt
utilities than inconsistent states (whose action-values are suppressed), the effect
io to choose perceptual actions that lead to consistent internal states.

6.2 Performance Results

A series of experiments were performed on the GB-task to evaluate its performance
quantitatively. In each run, the robot was sequentially presented with 1000 in-
stances of the task (i.e., 1000 trials). As in Chapter 5, each instance consists of a
randomly configured ple of 4 blocks, with the pile always containinj exactly one

3See [Tan, 1991a] for a nice analysis of this overestimation technique.
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Figure 6.3: A plot of the number of steps per trial as a function of the instances
seen by Meliora-1I for a typical experimental run. High variation is due to the
wide variety of tasks being solved.

green block; and if in any trial the robot fails to solve the problem after gq,it -- 30
overt actions, it mevyes on to the next trial.

Performance results for a typical experimental run are shown in Figure 6.3.
The graph shows the number of overt actions taken by Meliora-II for each of the
1000 instances of the task it encounters duri-ig a typical run. Initially, Meliora-II
fails on almost every trial (i.e., it takes 30 steps and quits). It does, however,
manage to solve a few instances. These early successes are invariably easy prob-
lems, requiring only one or two correct actions to solve. After about 100 trials,
Meliora begins to solve more and more instances including more difficult prob-
lems. Eventually, it learns to solve even the most difficult instances and rarely
fails (e.g., < .5% failure after 1000 trials).

Meliora's performance on a given trial depends strongly on the difficulty of
the trial instance; consequently, the curve in Figure 6.3 has a large variance.
A clearer picture of Aleliora's performance is obtained by averaging results over
multiple experimental runs. Figure 6.4 plots the solution time per trial averaged
over 200 runs. Plots for the optimal number of steps (average of 200 runs) and

for an agent behaving randomly are also shown. The figure clearly shows that
Meliora's initial performance is poor - near the maximum of 30 steps per trial
- but improves considerably during the first few hundred trials. The system's
performance settles at just under 12 steps per trial (about 125% optimal).

The system's performance fails to converge to optimal for two reasons. First,
with probability 1 - p (p = 0.9), the decision system chooses its overt action ran-

1000insance ofthe askit ncouter dunig typcalrun Iniialy, Mlioa-T

fais o alostevey tial(i~., tkes30 tep an quts) It does howver



0 20 4;0 60. goo 100

Figure 6.4: A plot of the average number of steps per trial as a function of the
instances seen by Meliora-II. The average is taken over 200 runs and, provides
a smoother picture of the system's learning curve. The system's steady state
performance is approximately 125% optimal. Also shown is the average number
of steps taken by an agent acting randomly.

dorly, reflecting a simplification in our decision algorithm that can be eliminated
by incorporating more complex procedures for controlling exploration [Barto et J.,
1990; Kaelbling. 1990]. Second, the decision system is not garanteed in every case
to find a consistent lion (even if it exists) since the perceptual subcycle only exe-
cutes 4 perceptual actions and chooses the lion from the set of at most five uniqte
internal states. Further, perceptual actions are also occasionally (1 -p' = 0.1)
selected randomly. As a result, residual inconsistent lions occasionally arise, and
interfere with the system's performance.

Figures 6.3 and 6.4 show that the system learns to solve the task, but they
say nothing about which instances Meliora learns to solve first or the order in
which the robot learns its task-dependent representation. To get a gli -npse at
the order in which instances of the task are learned, each problem instance was
classified into one of four categories: easy, intermediate, difficult, and ver difficult.
Easy problems correspond to instances in which the green block is clear and the
robot need only pick it up. Intermediate problems include instances where the
green block is covered by one block; difficult problems, two blocks; and very
difficult problems, three blocks. Plots of the average trial times and average
success rate for each of these four classes of problems are shown in Figure 6.5 and
Figure 6.6, respectively. Both figures show that the agent first learns to solve easy
tasks reliably, and then learns more and more difficult ones. In Figure 6.5, the
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agent shows improvement ong easy tasks immediately; it shows improvement on
intermediate tasks after 10-20 trials; on difficult tasks after 50-60 trials; and on
the most difficult tasks after 70-80 trials (see Figure 6.5b). A similar trend is seen
in Figure 6.6, which also shows that the agent eventually learns to solve all but
the most difficult tasks reliably and then only fails about 10% of the time.4

To determine the order in which Meliora-TI learns a consistent representation,
statistics were collected to measure the amount of overestimation that occurs dur-
ing learning. As beiore, world states were classified into four categories according
to their distance to the goal: easy, intermediate, difficult, and most difficult. For
each class, the fraction of times per trial (over 200 runs) the lion overestimated
(and was suppressed) was maintained as a function of the number of trials seen.
These percentages are plotted in Figure 6.7. As expected, the agent initially over-
estimates a high fraction of the time. This fraction is especially high because a
single overestimation can cau ie a chain of subsequent overestimations; and lack-
ing knowledge on how to control perception, the agent frequently fails to choose
a consistent lion. With experience, however, the agent eventually learns to select
consistent internal states, and the amount of overestimation decreases.

We expected Meliora-Il to learn consistent lions for easy states first and then
to boot-strap its way to consistency for more and more distal states. To some
extent this expectation is verified in Figure 6.7, which shows that the amount of
overestimation decreases first for easy states and decreases later for more diffi-
cult states. Early on, the fractions for intermediate, difficult, and most difficult
problems are virtually indistinguishable, explained by the fact that initially these
more difficult problems are rarely solved, and when they are, they tend to be inef-
ficient. For example, when solving an intermediate problem, it is common for the
agent to stack an extra block on the green pile, try other unhelpful actions within
that configuration for a while, unstack the block, and go on to solve the problem.
Thus, the agent sees mixes of intermediate, difficult, and most difficult states.
Initially, therefore, all trials end up visiting about the same fraction of consistent
states. This random searching is much less prevalent in easy tasks whose solu-
tions involve only one or two correct actions. Eventually, as the agent learns to
solve easy problems (after 80-100 trials), intermediate states become increasingly
consistent and the agent visits harder states less frequently on its way to the goal.
The inconsistency in intermediate states tends to decrease while the consistency
of more difficult states remains unchanged.

Figure 6.7 also shows that after 1000 trials the agent continues to overestimate
a substantial fraction of the time. This fraction is fairly low for easy problems (,
5%) but higher for the most difficult problems (, 45%). There are three reasons
for this high rate of overestimation. First, as previously mentioned, Meliora-Il is

'Increasing nqt,,l slightly, say to 40, almost always gives the agent the extra time it needs to
solve even the most difficult problems
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Figure 6.5: Plots of the average number of steps per trial for each of the four classes
of problem instances: i) easy (no unstacking); ii) intermediate (1 to unstack); iii)
difficult (2 to unstack); and iv) most difficult (3 to unstack). a) shows a complete
plot ranging from 0 to 1000 trials; b) shows a focused plot ranging from 0 to 200
trials. The plots show that the agent learns to solve easier tasks first.
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Figure 6.6: Success rates for each of the four classes of problem instances versus
the number of trials seen by the agent. a) shows a complete plot ranging from
0 to 1000 trials; b) shows a focused plot ranging from 0 to 200 trials. The plots
show that the agent learns to solve easier tasks first and eventually learns to solve
all instances fairly reliably.
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Figure 6.7: The fraction of overestimations encountered over 200 runs for each of
the four classes of problem instances. The plot shows that consistent represen-
tations are learned for easy problems first, followed by consistent representations
for more difficult problems, and that the agent continues to perform in the face
of residual inconsistencies and overestimation.

not guaranteed always to find a consistent internal state, even if one exists. This
explains the small fraction of steady state overestimation that occurs even for
easy problems. Second, a single overestimation (and suppression) tends to cause
a chain reaction of overestimations in earlier "set-up" states (even for consistent
states). Thus, the high fraction of overestimation in more distal (difficult) states
is explained by the fact that occasional overestimations in easy states propagate
back to these states and destroy consistencies there. Third, when overestimations
occur they tend to impair the agent's decision policy temporarily. Often the agent
will waste a great deal of time in an inconsistent confused loop until it gives up
or manages to stumble onto a state from which it can solve the problem. As
a result, these statistics are misleading in that they tend to report repeatedly
overestimations for the same inconsistent internal states.

The robustness of the Meliora's performance in the face of persistent overes-
timations led us to consider tasks with more than four blocks. Another set of
experiments was performed in which the problem instances ranged from easy (0
blocks to unstack) to most difficult (3 blocks to unstack). In these experiments,
however, additional outlying blocks were added to the pile. The number of out-
liers was randomly chosen between 0 and 20.' Outliers interfere with the system's
ability to learn the most difficult instances because the agent's sensory motor sys-

'Subsequent experiments with as many as 50 blocks have shown similar results.
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tern cannot distinguish between stacks containing four or more blocks. Therefore,
the agent has no way of distinguishing (under any sensory-motor configuration)
states where it has to unstack three blocks from states where it has to unstack 4,
5, 6, or more blocks. These states do not have consistent internal representations.
Results from the experiments are shown in Figure 6.8. They are comparable to the
results from the earlier experiment, except with slightly longer average solution
times and a slightly lower success rate (especially for the most difficult instances).
Nevertheless, even in the face of inconsistencies the agent is capable of learning a
robust decision policy.

6.3 The Consistent Representation Method

The lion algorithm used by Meliora-II is a specific instance of a general technique
which we call the Consistent Representation (CR) Method. The remainder of
this chapter outlines the CR-method, describes the lion algorithm in terms of it,
considers alternatives to the techniques used in Meliora II, and describes other
recent work that makes use of the CR-method.

In the CR-method, control is comprised of two stages: an identification stage
and an overt control stage (cf. Figure 6.2 and Figure 6.9). The objective of the
identification stage is to generate a consistent, task dependent internal representa-
tion. This is accomplished by an identification procedure i that executes a series
of non-invasive perceptual actions that collect the information needed to define a
consistert internal state. Once a consistent internal state has been identified, an
overt control procedure b is invoked which generates a single overt action. Both the
identification and overt control procedures are adaptive. The identification proce-
dure is adjusted to eliminate inconsistent states from the internal representation,
and the overt control procedure is adjusted to maximize future expected return.
Let ui and Ub denote the procedures used to update the identification and overt
control procedures, respectively. A schematic diagram of the CR architecture is
shown in Figure 6.9.

The operations in the decision cycle of a CR-method are as follows:

1. At time t, evaluate the identification procedure i, generating an internal
state s', which represents the current external state.

2. Using s' as input, evaluate the overt control procedure b, generating an overt
action a'.

3. Perform a' and observe the next internal state s+ and the reward t ob-

tained.

4. Evaluate u,, updating i based on the observations made in Step 3.
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Figure 6.8: Performance plots for experiments that include piles of up to 20
outlying blocks, a) shows the average solution time for each class of problem,
b) shows the success rate for each class of problem and c) shows the fraction
of overestimations observed for each class of state. The plots are comparable
to those in our original experiments and show that the agent can learn even in
environments that it cannot consistently represent.
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stage. The goal of identification is to generate a consistent, task dependent inter-
nal state space. The goal of overt control is to maximize the future discounted
return. In the figure, i and b represent the identification and overt control proce-
dures, respectively. i and b are both adaptable, and the algorithms used to update
them are ui and ub, respectively.
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5. Evaluate ub, updating b based on the observations made in Step 3.

The central idea behind the CR-method is that the agent aims to learn and
base its actions on an internal representation of the task that is consistent. Each
internal state is assumed to define an equivalence class of external states that all
share the same set of action-values. In other words, each internal state satisfies
the Markov property with respect to predicting future rewards - information
in addition to the internal state does not improve the agent's ability to predict
future reward. When inconsistencies exist, they are detected and eliminated. This
consistency assumption is derived from our desire to use existing reinforcement
learning techniques for overt control. That is, if overt control is to be learned using
Q-learning [Watkins, 1989], the AHC algorithm [Sutton, 19841, the bucket brigade
[Holland et al., 1986], or other learning algorithms based on temporal differences,
then the internal representation generated by the identification stage must be
consistent. Our desire to use reinforcement learning for overt control constrains
the form of the internal decision problem and defines the requirements for the
identification stage. It also imposes requirements on the sensory-motor system.
In particular, the sensory system must be capable of providing at each point
in time enough information to identify a consistent internal state. If sufficient
information cannot be attained from immediate sensor data, then the sensory
system may need to be augmented with some kind of short term memory that can
be used to keep track of relevant information from the past.

One might say that with the CR-method we are aiming to construct internal
decision problems that are Markov. While it is the case that a Markov internal
decision problem has a state space that is consistent, it nced not be the case that
a consiste.at internal state space defines a Markov decision problem. In particular,
it is possible for an internal decision problem to have a consistent internal state
space but have a non-Markov transition function. Thus, the class of decision
problems with consistent state spaces is a strict superset of the class of Markov
decision problems. Nevertheless, it is intuitively correct to think of an agent as
learning a Markov representation of the external task.

6.3.1 Meliora-II as a CR system

Meliora-II, and the lion algorithm it employs, is one instantiation of the CR-
method. However, there are many other ways to implement the various compo-
nents of the architecture and these are worth exploring. In this subsection, we
discuss Meliora-lI from the general perspective of the CR-model and discuss a
number of alternatives. In the next subsection, we briefly describe two other sys-
tems [Chapman and Kaelbling, 1991; Tan, 1991a; Tan, 1991b] that also exemplify
the CR-method.

99



Overt Control in Meliora-U

From the description in Figure 6.1, it may not be completely apparent that
Meliora-ll uses 1-step Q-learning for adaptive overt control. However, notice that
at each time step a single internal state is identified (the lion) and used to guide
decision making and utility estimation. When the lion states do not overestimate
(i.e., are not suspected of being inconsistent) their action-values are updated us-
ing the 1-step Q-learning rule. Also, notice that the utility estimates used in the
updating rule are just the utility estimates of the lions (the identified states). Up-
dating the action-values for non-lions also uses a modified 1-step estimator, but
is better thought of as part of the identification process. Thus in Meliora-II, ub,
the updating algorithm for overt control, corresponds to the updating procedure
used in 1-step Q-learning.

Similarly, the overt control procedure, b, used in Meliora-II corresponds to a
simple version of 1-step Q-learning. Namely, with fixed probability p the agent
chooses an action at random; otherwise, it performs the action with the largest
action-value.

Alternative Approaches to Overt Control

In general, any number of reinforcement learning algorithms can be used to im-
plement overt control. We used 1-step Q-learning because it is simple and conve-
nient, but other techniques, such as multi-step Q-learning [Watkins, 1989], AHC
algorithms [Sutton, 1984], bucket brigade algorithms [Holland et al., 1986], and
Interval Estimation algorithms [Kaelbling, 1990], can be used as well.

Identification in Meliora-II

In Meliora-II, the identification procedure proceeds by executing a series of per-
ceptual actions which collect a set of candidate internal representations. The
perceptual actions executed are determined by a perceptual control policy which
maps internal states into perceptual actions. This policy is learned using elements
of 1-step Q-learning. However, instead of estimating future returns, the action-
values encode information about the likelihood of generating consistent internal
states. Perceptual actions that cause the system to focus on relevant aspects in
the environment and lead to consistent internal states tend to have larger action-
values than perceptual actions that focus attention on irrelevant aspects of the
environment. Once a number of candidate internal states are collected, the state
with the largest action-value is selected to represent the current external state.

A crucial operation in any algorithm based on the CR-method is the identifica-
tion of inconsistent internal states. In Meliora-II, inconsistent internal states are
detected by monitoring the sign in the estimation error of the 1-step Q-learning
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Figure 6.11: Inconsistent decisions can be detected by partitioning the equivalence
class of a decision in two and looking for differences in the return distributions for
the two subsets. If a partitioning exists for which the expected returns for the two
subsets differ, then the decision is necessarily inconsistent. If no such partitioning
exists, then the decision is consistent.

the way until a leaf is encountered. If every leaf node in the tree is consistent,
then the tree represents a universal identification procedure. If not, the tree can
be refined by detecting the inconsistent leaves and refining them by splitting them
with additional sensing operations.

In Meliora-I inconsistent states are detected based on overestimation of the
action-value function. While this technique is sufficient for the GB-task, it is
extremely limited since it works for decision problems that are deterministic and
that have non-negative rewards only. Fortunately, there are other techniques that
are more general and probably more effective in the long run.

By definition, an internal decision is inconsistent if any of the decisions it rep-
resents in the external model have different optimal action-values. Thus, one way
to determine whether or not a decision d' is'inconsistent is to split its equivalence
class, DRep(d'), into two or more subsets and look for differences in the expected
returns of each subset. If a partitioning exists such that the expected return
for two subsets differ, then the decision is necessarily inconsistent. If no such
partitioning exists then the decision is consistent. This idea is illustrated graph-
ically in Figure 6.11. The basic idea is to keep track of some extra information
(e.g., previous state information or additional sensory input bits) that can be used
to partition DRep(d') and then use statistical techniques to determine if the ex-
pected returns for these subsets are identical. There are several statistical methods
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Figure 6.11: Inconsistent decisions can be detected by partitioning the equivalence
class of a decision in two and looking for differences in the return distributions for
the two subsets. If a partitioning exists for which the expected returns for the two
subsets differ, then the decision is necessarily inconsistent. If no such partitioning
exists, then the decision is consistent.

the way until a leaf is encountered. If every leaf node in the tree is consistent,
then the tree represents a universal identification procedure. If not, the tree can
be refined by detecting the inconsistent leaves and refining them by splitting them
with additional sensing operations.

In Meliora-I inconsistent states are detected based on overestimation of the
action-value function. While this technique is sufficient for the GB-task, it is
extremely limited since it works for decision problems that are deterministic and
that have non-negative rewards only. Fortunately, there are other techniques that
are more general and probably more effective in the long run.

By definition, an internal decision is inconsistent if any of the decisions it rep-
resents in the external model have different optimal action-values. Thus, one way
to determine whether or not a decision d' is'inconsistent is to split its equivalence
class, DRep(d'), into two or more subsets and look for differences in the expected
returns of each subset. If a partitioning exists such that the expected return
for two subsets differ, then the decision is necessarily inconsistent. If no such
partitioning exists then the decision is consistent. This idea is illustrated graph-
ically in Figure 6.11. The basic idea is to keep track of some extra information
(e.g., previous state information or additional sensory input bits) that can be used
to partition DRep(d') and then use statistical techniques to determine if the ex-
pected returns for these subsets are identical. There are several statistical methods
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that can be used to determine whether or not the expected returns are identical.
The student's T-test [Lehmann, 1959 used by Chapman and Kaelbling [Chap-
man and Kaelbling, 1991] is perhaps the most appropriate since in many cases
the return distribution is likely to be approximately normal. However, other para-
metric and nonparametric tests [Bradley, 1968; Randles and Wolfe, 1979] may also
prove useful, including techniques based on uncertainty intervals [Kyburg, 1991;
Kaelbling, 1990].

The appeal of statistical methods is that they apply in general. However,
one troublesome assumption made by statistica! methods is that the underlying
stochastic process is stationary. Unfortunately, in reinforcement learning the re-
turn distribution is almost never stationary since the agent is continually updating
its utility estimates and its control policy. Thus, detecting statistical differences
in return distributions may be troublesome.6

In general for any random variable X, we will say that the internal decision
d' = (s'a') has uniform statistics (or is consistent) with respect to X if any and
all subsets of DRep(d') have the same underlying distribution with respect to
X. Given this definition, a related statistical approach that may* be useful for
circumventing the non-stationarity associated with return distributions is to detect
inconsistent states by enforcing local consistency requirements. In particular, if
each internal decision is consistent with respect to the next internal state and the
next immediate reward, then every decision is necessarily consiste. with respect
to the return. Since these local statistics (next state and immediate reward)
are stationary, they are likely to be easier to estimate and compare accurately.
This local approach is equivalent to monitoring the internal decision process to
ensure that it is Markov. When a statistical test shows a state to be non-Markov
with respect to immediate rewards and predicting the transition function, it is
inconsistent and the identification function must be refined.

A third approach to detecting inconsistent states that avoids statistical tech-
niques altogether is to rely on feedback from external sources. For instance, if
the learning agent is embedded in a cooperative social environment where it can
receive immediate feedback from an external supervisor or can watch the behavior
of another skilled agent, then it may be possible for the agent to deduce which
states are inconsistent by detecting variation in the feedback or behavior of the
external agent. For instance, if an external critic provides a signal indicating the
correctness of an action immediately and if the signal varies for a given internal
decision, then the decision must be inconsistent (assuming the external critic is
reliable). Similarly, if for a given internal state the agent observes a variation in
the actions performed by a skilled role model, then the sta.te is probably "iconsis-

6Chapman and Kaelbling [Chapman and Kaelbling, 1991] have successfully used the Student's
T-test on returr jistributions to detect inconsistencies for a relatively complex task. Judging
from their success, non-stationarity may be less of a problem than expected. Certainly more
empirical evidence is needed to know fo sure.
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tent (agait assuming the role model's behavior is reliably optimal). These more
direct methods for detecting inconsistent states make strong assumptions about
the environment in which the agent is embedded, but can substantially reduce
the time needed to learn consistent internal representations. We have successfully
applied these direct methods in the versions of Meliora described in Chapter 7.

6.3.2 Other CR-systems

Two other adaptive control algorithms that are excellent examples of the CR-
method are the G-algorithm [Chapman and Kaelbling, 1991] and the CS-QL al-
gorithm [Tan, 1991a; Tan, 1991b].

The G Algorithm

Recent work by Chapman and Kaelbling aims to address the problem of having
to generalize over state spaces generated by sensory inputs with excessive irrele-
vant detail. In their target domain the sensory system generates more than one
hundred bits of input, most of it irrelevant. While the large input vector defines
a consistent internal representation, the overwhelming size of the internal state
space that results (- 21' states) severely interferes with Q-learning by making
too many distinctions. They call the problem of filtering out the irrelevant infor-
mation the input generalization problem. Their approach, called the G-algorithm,
is to incrementally build a decision (or classification) tree, called a G-tree. The
G-tree partitions the set of possible inputs into a much smaller set of internal
states. The leaves of the tree define the internal states and internal nodes identify
relevant input bits (or tests) to perform during identification. The tree represents
a universal identification procedure in which, at each time step, the input vector
is classified by traversing the tree from the root to a leaf by following the branches
whose values match the bits in the input vector. Input bits that are not explicitly
tested in the G-tree are considered irrelevant and are ignored.

The objective of the G-tree is to define an internal state space that is consistent.
Internal states that are not consistent are detected and split into two new states
by adding relevant bit tests to the leaves in the tree. To detect inconsistent states
the G-algorithm uses the Student's T-test on two statistics: the immediate reward
and the discounted future return. If dividing a leaf node in two (by adding another
input bit to the tree) leads to subnodes that are statistically different, then the
leaf is suspected of being inconsistent and split along that bit.

The G-algorithm is used to learn an identification procedure (i.e., the G-
tree), while another component learns an overt control policy. For overt control,
Chapman and Kaelbling use a variation on Q-learning called the Interval Esti-
mation (IE) algorithm [Kaelbling, 1990]. Using the IE algorithm along with the
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G-algorithm, they have demonstrated a system that learns an efficient G-tree and
learns to solve a difficult sequential decision problem.

The CS-QL Algorithm

A similar system was independently developed by Tan [Tan, 1991a; Tan, 1991b].
Like Chapman and Kaelbling's, Tan's system uses an incrementally built decision
tree to classify situations into internal states. However, Tan's algorithm, called
CS-QL, is different in several ways. First, instead of splitting nodes by bits in the
sensory input, nodes are split on more general sensing operations that have costs
and may be multi-valued. Second, insertion of sensing operations into the decision
tree takes into account both the utility and the cost of the operation, thus yielding
a cost-sensitive decision tree. This is an advancement over the G-algorithm, which
does not account for the cost of perceptual actions. In the lion algorithm, cost-
sensitive perception is achieved by discounting the rewards used to update the
perceptual action-value function. The CS-QL algorithm uses an overestimation
technique similar to the one used in Meliora-II to detect inconsistent states.

For overt control, the CS-QL algorithm uses 1-step Q-learning. Since inconsis-
tent states are detected using the overestimation, CS-QL is restricted to determin-
istic tasks with non-negative rewards. Nevertheless, Tan has demonstrated the
algorithm in a system that efficiently learns to identify landmarks and navigate
in a simulated 2-D environment.
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7 Cooperative Mechanisms

7.1 Introduction

Reinforcement learning involves a process that searches the world for states that
yield reward. But-for most real-world tasks, the state space is large and rewards
are sparse. Under these circumstances the time required to learn an adequate con-
trol policy can be excessive. The detrimental effects of search manifest themselves
most at the beginning of the task, when lack of knowledge can lead to unbiased
random search, and in the middle of a task, when changes in the environment
invalidate an existing control policy.

In nature, intelligent agents do not exist in isolation but are embedded in a
benevolent society that guides and structures learning. Humans learn in rich,
carefully structured environments; they learn by watching others, by being told,
and by receiving criticism and encouragement. Learning is more often a transfer
than a discovery. Similarly, robots cannot be expected to learn very much in
isolation. They must be embedded in cooperative environments, and algorithms
must be developed to facilitate the transfer of knowledge among them. Within
this context, the reinforcement learning framework continues to play a vital role:

1. for pure discovery purposes - that is, reinforcement learning can be useful
for increasing the collective knowledge of a society as a whole,

2. for refining and elaborating knowledge gained from others,

3. for carrying on in the absence of guidance from others and for interpolating
between periods of interaction, and

4. for providing a simple signaling mechanism (rewards) for communicating
and transferring knowledge.

This chapter proposes two cooperative mechanisms to reduce search and de-
couple the learning rate from state-space size. The first approach, called Learning
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with an External Critic (LEC), is based on the idea of a mentor who watches the
learner and generates rewards, which signal the correctness of the agent's most
recent action. This reward is used temporarily to bias the learner's overt control
strategy and to detect inconsistent internal states more quickly. The second ap-
proach, called Learning By Watching (LBW), is based on the idea that an agent
can gain valuable experience vicariously by relating the observed behavior of oth-
ers to its own. While LEC techniques require interaction with an external agent
that is knowledgeable and attentive, LBW techniques can be effective even when
the external agent is unskilled and unaware of the learner.

The chapter begins by developing and demonstrating LEC and LBW algo-
rithms in the context of the GB-task. Two new programs, Meliora-III-LEC and
Meliora-III-LBW are described and shown to outperform Meliora-Il significantly.
A formal analysis of search is then presented. To facilitate the analysis, attention
is focused on a restricted (but representative) class of decision problems, called
homogeneous problem solving tasks. For these tasks, reinforcement learning algo-
rithms that rely on random walks to solve problems initially are shown to have
expected learning times that are at least exponential in the depth of the state
space.' For Q-learning, true random walks can be avoided by proper selection
of an initial (unbiased) action-value function. In this case, the expected learn-
ing time appears to be at least polynomial in the state space depth. Further
improvement can be made by using the LEC and LBW algorithms, which have
expected learning times that are at most linear in the size of the state space and,
under appropriate conditions, are independent of the state space size altogether
and proportional to the length of the optimal solution path.

7.2 Learning with an External Critic

Learning with an external critic (LEC) enhances the learning environment by
providing helpful hints that indicate the appropriateness of the robot's most recent
actions. LEC algorithms achieve faster learning by eliminating the delay between
the performance of an action and its evaluation (feedback), thus facilitating credit
assignment. Depending upon the communication skills of the learner and the
critic, a range of LEC algorithms can be devised [Whitehead and Ballard, 1991b].
A particularly simple approach, called Binary LEC (B-LEC) is to assume that
after each overt action an external critic generates a binary signal, sig(t), with
probability Pcritic according to the rule:

sig(t) YES if at is optimal (7.1)
NO otherwise

'The depth of a state space is formally defined in Section 7.4; however, intuitively it corre-
sponds to the maximum distance (measured in number of steps) between any two states in a
state space.
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where at is the overt action performed by the learner at time t.
To evaluate the potential utility of this immediate feedback a new program,

Meliora-III-LEC, was developed to exploit this information for the GB-task. The
control algorithm used by Meliora-III-LEC is called the Biasing Binary LEG (BB-
LEC) algorithm.

7.2.1 Meliora-II-LEC

In Meliora-Ill-LEC, immediate feedback from the critic is used to facilitate adap-
tation in both overt control and state identification. With respect to overt control,
the critic's signal is used to bias the robot's overt control policy. This is espe-
cially useful during the early stages of learning since it reduces floundering. With
respect to state identification, variation in the critic's feedback is used to detect
inconsistent internal states quickly.

The decision algorithm used in Meliora-III-LEC is shown in Figure 7.1. Struc-
turally, it is quite similar to the lion algorithm used by Meliora-Il. However, &

number of minor modifications have been made to take advantage of the informa-
tion encoded in the external critic's signal.

Biasing Overt Control

In order to positively bias the robot's overt control policy, the critic's signal is
converted into an internal source of reward. At time t, the robot generates an
internal reward, r,(t), according to the rule:

+Re if sig(t) = YES
,C(t) = -Re if sig(t) = NO (7.2)

0 otherwise

where Re is a positive constant. According to this rule, positive and negative
internal rewards are generated whenever positive or negative feedback is returned
by the critic, respectively. When no signal is returned by the critic the internal
reward is zero.

The reward received from the environment, denoted r,, and the critic's reward
are treated sepal tely. Reward from the environment is treated as in Meliora-Il
-- it is used to iearn a specialized overt action-value function, Reward from the
critic is used to learn a bias function B over internal state-action pairs. The
bias function .-stimates the expected value of the immediate reward received from
the critic foi each state-action pair. In Meliora-III-LEC, the values of the bias
function are updated using a simple temporally weighted average:

V.Es, Bt+l(s,,a,) - (1 - 4)B,(st,at) + Or,(t), (7.3)
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Overt Cycle:

1) Execute Perceptual Cycle and generate St, a set of internal
representations for the current world state.

2) Let di = (si, al) be the maximal internal decision:
di = arg max(,,.)es, Ao [Q,(s, a) + B(e, a)]

3) Choose a state, the lion, to represent the current world state: lion = sj.
4) Estimate the utility of the current world state, st: VE(s,) -- V,(lion).
5) Execute Update-Overt.Estimates based on VE(s,), ro-1, oac,-, lion,. 1 , sigq(t - 1);

where r is the reward received at time t, oacht- 1 is the last overt action executed,
liont_1 is the internal state selected to represent the previous world state,
and sig(t - 1) is the critic's signal for time i - 1.

6) Choose the next overt action to execute:
With probability p follow policy fo(lion) = al,
Otherwise choose randomly: oac - Random(Ao)

7) Execute oact to obtain r,, sig(t), and sj+j,
8) Go to 1).

Update-Overt-Estimates:

1) Estimate the error in the lion's action-value: El,.,, - (r,-. + 'yVE(sg)) - Q(lion-.,oact-.).
2) Update the action-value of the lion:

If (E,.. < 0) or
(B(lion,. 1 a.) > 0 and sig(I - 1) = NO) or (B(lion,-.,at.) < 0 and sig(t - 1) = YES)

then the lion is suspected of being inconsistent, so suppress it: Q,(lion,-1 ,oac,-.1 ) -0.0
Else update it using the standard I-step Q-learning rule:

Qj(lion i 1, oacl, - 1) "- Qj(lioni- 1 , oat. 1) + aE, on.
3) Update non-lion internal states:

For each s r St-I and s 0 liong-I do:
Let E, = r-.I + I 'd(s) - QI(s, oacl.1)
If (E, < 0) or

(B(s,a- 1) > 0 and sag(t - 1) = NO) or (B(s,at- 1) < 0 and sig(t - 1) = YES)
then s is suspected of being inconsistent, so suppress it: Qj(s,oac-l.) ,- 0.0
Else update it using the lion's error:

Q,(s, oat- 1) - Q,(s, oact-) + a'E, 0n - where a' < a.
4) Update the bias function B:

For each s E S,- 1 do: B(s,a-1) -- (1 - 0)(s,at-1)+ Or,(t- 1).

Figure 7.1: An outline of the decision procedure implemented by Meliora III-LEC.
This procedure is similar to the lion algorithm, except that reward from the critic
is 1) used to learn a bias function B, which is used to bias the agent's overt control
policy, and 2) used to detect inconsistent internal states. The Perceptual Cycle
is not shown here since it is identical to the one described in Figure 6.1.



where St is the set of candidate internal states returned by the perceptual cycle
and at is the internal overt action executed at time t. The learning rate parameter,
k, is a constant between 0 and 1. The average is temporally weighted so that the
robot can "forget" old advice that has not been recently repeated. Without it, the
robot has difficulty adapting to changes in the task once advice is extinguished or
changed.

The decision rule for overt control is simple. At time t, let di = (31, at) be the
candidate internal decision that maximizes the sum of the action-value and the
bias function. That is,

di = argmax(s,,)Os, x Ao Ql(s,a) + B(s,a)]. (7.4)

In Meliora-IJI, the state identified to represent the current external world, the lion,
is simply the state, st, of the maximal decision, i. Similarly, the robot's overt
policy, fo(S,), is the action at of the maximal decision. Using this rule, decisions
that have previously been associated with positive feedback from the critic are
preferred over decisions that have received no feedback, and decisions associated
with negative feedback tend to be suppressed.

After executing an action and observing the reward, next state, and critic's
signal that result, the action-value function, Q1, is updated more or less the same
as in Meliora-ll. If a decision is suspected of being inconsistent it is suppressed.
Otherwise, if it is the lion's decision, it is updated using the 1-step Q-learning
rule; if not, it is a non-lion and is updated based on the lion's error. The bias
function is also updated at this time.

The discounted return and the critic's immediate reward are estimated sep-
arately to ensure that subsequent extinction of the critic's feedback does not
inadvertently disrupt learning of the underlying decision problem. If the two
rewards are combined and used to estimate a single action-value function, then
subsequent extinction of the critic's feedback leads to a reduction in the over-
all expected return and errors in the action-value function. These errors, in turn,
cause a prolonged period of non-optimal behavior, while the agent estimates a new
action-value function for the original, underlying decision problem (see [White-
head and Ballard, 1991b] for details). By separating the two rewards, the robot is
able to learn the action-value function for the underlying decision problem directly.
In this case, the only effect of feedback extinction is on the bias function, whose
values gradually decrease to zero. This allows the external critic to terminate
"programming" once the agent has learned the task.

Detecting Inconsistent Decisions

In Meliora-III-LEC, inconsistent decisions are detected both by using the overes-
timation technique described previously and by using feedback from the external
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critic. This combined approach leads to improved performance when the critic is
available but also allows the robot to fall back on an effective, but slower, method
when immediate feedback is absent.

To detect inconsistent decisions using the critic, the agent simply looks for
internal state-action pairs that have resulted in contradicting signals. That is, if
executing the decision d = (s, a) yields positive feedback at one point in time and
negative feedback at another, then (assuming the critic is reliable and the task is
stationary) it must be inconsistent.

Instead of keeping track of all the signals ever received for each internal de-
cision, the biasing function is used to detect contradicting signals. In particular,
at time t, for each 3 E St- 1 , the decision d E (s,a,-i) is considered inconsistent if
either

B(s,a,.-) > 0 and sigq(t - 1) = NO

or
B(;,a,_ ) <0 and sig(t - 1) = YES.

In the first case, the positive value of the bias function indicates that in the
past positive signals have been received for this decision, which contradicts the
current signal. In the second case, the negative bias value indicates previous
negative signals, contradicting the present positive signal. Both cases indicate a
contradiction.

7.2.2 Experimental Results

Meliora-Ill-LEC was applied to the GB-task to test the BB-LEC algorithm and
to determine the effect of an external critic on the learning rate. Each experiment
consisted of 100 runs of 250 trials each. To demonstrate the degree of thrashing
that occurs in an an unsupervised system, the time limit, nhfsit, was increased to
100 steps. Plots of the average solution time versus trial number are shown in
Figure 7.2. The results shown in this figure are for '- 0.8, 0' = 0.6, a = 0.2,
p = 0.9, p' = 0.9, and R, = 500. Qualitatively similar results were obtained
for a wide range of parameter values. Each curve in the figure corresponds to
a different rate of feedback from the external critic, ranging from no feedback
(Pcritic = 0.0, Meliora-lI) to feedback after each overt action (pni,c = 1.0). The
figure clearly demonstrates the performance improvement gained by addition of
an external critic. Even occasional feedback (e.g., pcri,i, = 0.2) has a tremendous
effect.

To assess the effect of the critic's signal on state identification, the average
number of suppressed decisions per trial is plotted versus trial number for the GB-
task in Figure 7.3. During the first few trials, the systems that receive immediate
feedback begin to learn the bias function and have high suppression rates. Some
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Figure 7.2: Plots of the average solution time versus trial number for Meliora-
III-LEC for pcrtie in the range [0.0, 1.0]. The plots show that feedback from an
external critic is extremely useful for improving the learning rate, even when it
occurs only occasionally.
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Figure 7 3: The average (over 100 runs) of the number of suppressed decisions per
trial of Meliora-Ill-LEC for Pcr~ttc E [0.0,1.0].
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of these suppressions are due to contradictions in the critic's signal; however, most
are due to action-value overestimations since in these experiments all action-values
were initialized to 1.0. After a dozen or so trials the systems with feedback begin
to perform nearly optimally and the suppression rate drops dramatically. The
low steady state suppression rate can be explained by noting that inconsistent
decisions tend to have negative (or lower) bias values. This tends to keep them
from competing for lionhood when consistent states are spuriously suppressed in
the steady state.

In a second experiment, the task was changed after 250 trials so that the
robot was rewarded for picking up a red block (instead of a green one). Most rein-
forcement learning algorithms (e.g., Q-learning) have a difficult time adapting to
such drastic changes since the previously learned action-value function interferes
with learning the new task by strongly biasing the agent's behavior away from
the new source of reward. Moreover, the time needed to "unlearn" (or change)
the existing action-value function is substantial since changes to action-values are
incremental [Whitehead and Ballard, 1991b]. However, as shown in Figure 7.4,
Meliora-III-LEC has little trouble adapting to the change. The incorrect existing
policy does not significantly interfere with learning in Meliora since quick suppres-
sion of inconsistent decisions makes "unlearning" almost immediate. Moreover,
the suppression rate at the point of change (trial 250) is lower than the initial
suppression rate. This follows since most of the useless decisions (i.e., those that
leave the external state unchanged) have already been detected as inconsistent
and suppressed by trial 250.

7.3 Learning By Watching

Another technique that can be used to improve the learning rate is to gain addi-
tional experience by observing and interpreting the behavior of others. We call
this approach Learning-By- Watching (LBW).

The conceptual organization of an agent using LBW is shown in Figure 7.5.
The agent has two fundamental modes: a performance mode and a watching
mode. In the performance mode, the agent acts like any other adaptive system
(i.e., it observes the state, chooses and executes an action, observes the outcome,
and adapts its policy accordingly). In the watching mode, the situation is similar
except the agent uses the behavior of another agent as its source of experience.
Depending upon the mode of operation, different sensing/behavior-interpretation
hardware is used to generate the state-action-reward sequences used for learning.

In our work with LBW we have assumed that the learner can correctly rec-
ognize the state-action-reward triple of any agent it is observing. This sequence
is then used for learning just as if it were the agent's own personal experience.
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Figure 7.4: Performance of Meliora-III-LEC in response to a change in the under-
lying decision problem. In this experiment the robot receives a reward for picking
up a green block for the first 250 trials and a reward for picking up a red block for
the last 250 trials. Quick suppression of inconsistent decisions allows Meliora-III
to adapt to task changes faster than more incremental approaches.
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Figure 7.5: The conceptual organization of an agent using LBW. In this architec-
ture, observations of other agents are used as an alternative source of experience
for the embedded learner.
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Although this assumption is overly simplistic and ignores many important is-
sues, it is reasonable considering our objective - to explore the potential bene-
fits of integrating reinforcement learning with more powerful cooperative mecha-
nisms like "learning-by-watching." The general issue of recognizing and interpret-
ing the behavior of others is fundamental to these cooperative mechanisms, and
some promising early work in this area has been reported [Newtson et al., 1977;
Tsuji et al., 1977; Thibadeau, 1986; Hirai and Sato, 1989; Kautz, 1987; Kuniyoshi
et al., 1990]. However, many important problems remain unaddressed.

Depending upon the particular circumstances of the agent and the environment
in which it is embedded, a number of LBW algorithms can be devised and a range
of performance improvements attained. A learner capable of observing a group
of equally naive peers solving similar tasks can gain from its observations, but
not nearly as well as when it observes a skilled role model. Further, if a learner
"knows" that the agent it observes is -killed, it can exploit that knowledge to make
even better use of its observations. We have studied a range of LBW algorithms
under a variety of conditions in a simple simulated environment [Whitehead and
Ballard, 1991b]. The results of these experiments indicate that LBW techniques
are robust and effective for a wide range of learning settings. With respect to
Meliora and the block-stacking task, we have only studied LBW in the context
of a skilled role model that is known to perform optimally. An LBW algorithm
for exploiting this ir' .rmation and experimental results for it on the GB-task are
described below.

7.3.1 Meliora-III-LBW

Meliora-III-LBW is a program that learns the GB-task with the help of LBW. The
program uses a version of the lion algorithm that has been modified to accommo-
date observations of a skilled role model. In this case, the embedded controller
uses two streams of experience for learning: personal experiences and observed ex-
periences. Personal experiences are used for adaptive perception and action much
as in Meliora-Il. Observed experiences are treated somewhat differently. With
respect to overt control, observed experiences are used to learn a bias function
B over state-action pairs: This bias function is used to bias overt control just
like in LEC. With respect to state identification, observed experiences are used to
identify potentially inconsistent states more quickly.

There are two modes of operation in Meliora-III-LBW: a performance mode
and a watching mode. The control algorithm used during the performance mode
is shown in Figure 7.6. This algorithm is almost identical to the lion algorithm
used by Meliora-lI (Figure 6.1), except that the choices of the lion and the policy
action are affected by the bias function. The control algorithm used while in
the watching mode is shown in Figure 7.7. In this mode, each control cycle
begins by performing the perceptual function to collect a sequence of candidate
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Overt Cycle:

1) Execute Perceptual Cycle and generate St, a set of internal
representations for the current world state.

2) Let d, = (s$, al) be the maximal internal decision:
dl = arg max(s,a)Es, xAo [Qi(s, a) + B(s, a)]

3) Choose a state, the lion, to represent the current world state: lion = s1.
4) Estimate the utility of the current world state, st: VE(sg) - V,(lion).
5) Execute Update-Overt-Q-Estirnates based on Ve(ss), ri-1, oacti-1, and liont- 1;

where r, is the reward received at time t, oactt-I is the last overt action executed,
and lion -, is the internal state selected to represent the previous world state,

6) Choose the next overt action to execute:
With probability p follow policy fo(lion) = al,
Otherwise choose randomly: oad - Randorn(Ao)

7) Execute oact to obtain a reward r1 , and a new world state, sg+j.
8) Go to 1).

Update-Overt-Q-Estimates:

1) Estimate the error in the lion's action-value:
Eh.o. .- (r,'- + -yVE(s)) - Ql(lion,-1, oact,_1).

2) Update the action-value of the lion:
If (E, o, < 0)
Then the lion is suspected of being inconsistent, so suppress it:

Qj(liont_1 ,oactg- 1 ) '- 0.0
Else update it using the standard 1-step Q-learning rule:

Qj(lhon_j, oact._) - Q,(lion,-1, oact-_1) + orVao..
3) Update non-lion internal states:

For each s E St- 1 and s # lion,-, do:
Let E, = rt-I + yVE(sg) - Qi(s, oacti-1)
If (E, < 0)
Then s is suspected of being inconsistent, so suppress it: QI(s,o ,ct- 1) - 0.0
Else update it using the lion's error:

Qi(s, oactt-1) - Q,(s, oacdt- 1 ) + a'Eon - where a' < a.

Figure 7.6: An outline of the decision procedure used by Meliora III-LBW in
the performance mode. This procedure is similar to the lion algorithm used by
Meliora II, except the control policy is biased by observations made during the
watching mode. The Perceptual Cycle is not shown here since it is identical to
the one used in Meliora II.,



Overt Cycle:

1) Execute Perceptual Cycle and generate St, a set of internal
representations for the current world state.

2) Let d, = (si, a,) be the maximal internal decision:
41 = arg max(,,)Es, XAo [Q(s, a) + B(s, a)]

3) Choose a state, the lion, to represent the current world state: lion = si.
4) Estimate the utility of the current world state, st: VE(sj) *- V,(lion).
5) Execute Update-Overt-Estimates based on VE(st), rt-,, a*,,, and liont-;

where rg is the reward received at time t, a*,1 is the last overt action observed,
and liongI- is the internal state selected to represent the previous world state,

6) Observe the overt action performed by the role model, a,
7) Go to 1).

Update-Overt-Estimates:

1) Estimate the error in the lion's action-value:
Ej,. o- (rt-I + tVE(st)) - Qt(lion,-1, oact.-1).

2) Update the action-value of the lion:
If (E,,on < 0)
then the lion is suspected of being inconsistent, so suppress it:

Qi(liona-it-1 ) - 0.0
Else update it using the standard 1-step Q-learning rule:

Qi(lion t-1 , oacth- .) *- Qi(liont_ , oact-...) + tEon .
3) Update non-lion internal states:

For each s E S- 1 and s A liontI do:
Let E, = rt-1 + yVE(st) - Qt(s,oacti-j)
If (E, < 0)
then s is suspected of being inconsistent, so suppress it: Q1(s, oactg-1) - 0.0
Else update it using the lion's error:

Qj(s, oacit..) -- Qt(s, oacit-1) + a'Ej,,, - where a' < a.
4) Also use inconsistencies in the role-model's behavior to suppress inconsistent decisions:

For each (s,a) E St -I x Ao do:
If (a = a'_I and B(s,a) < 0) or (a # a'- 1 and B(s,a) > 0)
then (s, a) is suspected of being inconsistent, so suppress it: Qj(s, a) 4- 0.0

5) Update the bias function, B:
for all (s,a) E St-1 x Ao do: B(s,a) +- (1 - 4O)B(s,a) + tpr(s,a).

Figure 7.7: An outline of the decision procedure used by Meliora III-LBW in the
watching mode. This procedure generates a set of candidate internal states to
represent the current situation facing the role model, observes the role model's
action, and updates the action-value function and a bias function based on the
results. An internal state is considered inconsistent if the role model is observed
to perform more than one action for that state.



representations for the current situation, St. From these candidates, a single lion
is identified to represent the current state. The perceptual cycle is not shown
in the figure since it is identical to the one used by Meliora II. Next, instead of
selecting an action to execute, the robot simply observes the action executed by
the external role model, ao, and the reward that results, ro'.2 At this point, the
robot has made an observation, Ot, which consists of the following information:
St - a set of candidate internal states; ao - the overt action command executed
by the A-E model; and ro - the reward received by the role model as a result of
its action. This information is used to update the action-value and bias functions
as follows.

The bias function is updated by increasing the bias of state-action pairs that
match the role model's behavior and by decreasing the bias of those decisions that
do not. At time t, the bias function is updated as follows:

For all (s, a) E SI- 1 x Ao do:
B(s,a) +- (1 - O)B(s,a) + ¢,r(s,a),

where,
+Ro ifa=a*1, -Ro otherwise

and where Ro is a positive constant and 0 is a fixed learning rate parameter
between 0 and 1.

The overt action-value function is updated using the same technique as in the
lion algorithm. That is, the lion is updated using the 1-step Q-learning rule and
non-lions are updated based on the error in the lion's estimate. As before, decisions
that are suspected of being inconsistent have their action-values suppressed. In
Meliora-III-LBW, inconsistent decisions are detected by using the overestimation
technique and by detecting variations in the role model's choice of action for a
given internal state. In particular, if for a given internal state, the role model is
observed to perform two different actions, then the internal state is assumed to be
inconsistent. The bias function is used to detect variations within internal states
as follows:

For all (s, a) E St x Ao do:
the decision (s, a) is suspected of being inconsistent and suppressed if:

1) a = a' and B(s,a) > 0
or

'The details of how this recognition is performed are non-trivial and may be very difficult.
However, in our experiments these difficulties are ignored.

'This method for detecting inconsistent states assumes that the role model always performs
the same optimal action for a given state, even when more than one exists.
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2) a a* and B(sa)< 0.

Both of these cases correspond to situations where the learner has previously
observed the role model perform a different action in a situation represented by
S.

7.3.2 Experiments

To evaluate the utility of LBW for state identification and overt control, Meliora-
III-LBW was tested on the GB-task. In these experiments the robot alternates
between solving the task itself and watching an external role model perform the
task. As before, experimental runs consist of 250 trials each. In these experiments
the following parameter values were used: a = 0.2, y = 0.8, 4' = 0.6, p = 0.9,
p' = 0.9, R = 500, and nquii = 100. Results are shown in Figure 7.8, which shows
the average number of steps per trial and the average suppression rate per trial
for Meliora-III-LBW and Meliora II. The average solution time curve for Meliora-
III-LBW shows only trials attempted by the robot. Both plots clearly indicate
that experiences gained by observing a skilled role model substantially improve
overall performance.

7.4 Analysis

This section presents a more formal analysis of search in the unbiased Q-learning,
LEC, and LBW algorithms. Naturally the scaling properties of any reinforcement
learning algorithm strorgly depend upon the structure of the decision problem and
the details of the algorithm itself. To date, we have been unable to analyze the
learning time complexity of Q-learning, LEC, or LBW in general. However, results
have been obtained for specific algorithms on a restricted class of deterministic
decision problems. In particular, it is shown that for a rather restricted (but
representative) class of generic decision problems, called homogeneous problem
solving tasks, the learning time of a zero-initialized r 'earning system scales at
least exponentially in the depth of the state space.' LEC and LBW algorithms
are shown to have substantially better learning time complexities. in particular,
an LEC algorithm is shown to have an expected learning time that is no worse
than linear in the state space size, and under appropriate conditions linear in the
length of the optimal solution path (and independent of the state space size).
Analogous results are obtained for T.BW algorithms.

'A zero-initialized Q-learning system is a system whose initial action-values are uniformly
zero. Also, as will be defined below, the depth of a state space corresponds roughly to the
maximum number of steps between two states in a state space.
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Figure 7.8: Plots of a) the average solution time and b) the average number of
suppressions per trial for Meliora-III-LBW and Meliora-JI.
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The analysis begins by defining a number of properties that are useful for
characterizing state spaces. These properties are then used to define the class
of homogeneous decision problems. Next, a lower bound on the expected learn-
ing time for a zero-initialized Q-learning system is derived, and its relevance to
Q-learning in general is discussed. Following that, results for LEO and LBW
algorithms are presented and discussed. For the most part, the proofs for the
theorems that follow are straightforward. They have been omitted for clarity of
presentation, but can be found in Appendix A.

7.4.1 Definitions

Let us begin by defining a number of properties that are needed to define the class
of homogeneous problem solving tasks.

Definition 1 (deterministic decision problem) A decision problem is deter-
ministic if it can be described by a Markov decision process whose transition and
reward functions are true functions (i.e., deterministic).

Definition 2 (1-step invertible) A deterministic decision problem is 1-step in-
vertible if every action has an inverse. That is, if in state x, action a causes the
system to enter state y, there exists an action a-1 that when executed in state y
causes the system to enter state x.

Definition 3 (uniformly k-bounded) A state space is uniformly k-bounded
with respect to the state x if

1. The maximum number of steps needed to reach x from anywhere in the state
space is k.

2. All states whose distance to x is less than k have b- actions that decrease
the distance to x by one, b+ actions that increase the distance to x by one,
and b= actions that leave the distance to x unchanged.

3. all states whose distance to x is k have b- actions that decrease the distance
by one and b= + b+ actions that leave the distance unchanged.5

Definition 4 (homogeneous) A state space is homogeneous with respect to the
state x if it is 1-step invertible and uniformly k-bounded with respect to x. In this
case, k said to be the depth of the state space.

5That is, at the boundaries, actions that would normally increase the distance to x are folded
into actions the leave the distance unchanged.
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Definition 5 (polynomial width) A homogeneous state space (of depth k) has
polynomial width if the size of the state space is a polynomial function of its depth.

Definition 6 (problem solving task) A problem solving task is a sequential

decision problem in which

1. each trial begins in a designated start state S,

2. each trial ends when the system reaches a designated goal state G, or gives
up, and

S. the system receives a non-zero, positive reward only upon entering the goal
state. That is,

rt 1 if xt+i = G(75
0 oiherwise (75)

Definition 7 (homogeneous problem solving task) A task is a homogeneous
problem solving task if it is a problem solving task and its associated state space
is homogeneous with respect to the goal state 0.

Homogeneous problem solving tasks represent an idealization of decision prob-
lems commonly studied in reinforcement learning. For instance, properties such
as locality and invertibility of actions, and delayed, sparse rewards are common
to many sequential decision problems. Other assumptions, such as the uniformity
of the state space, the deterministic effects of actions, and the use of single ini-
tial and final states are somewhat restrictive; however, they simplify the analysis.
Some of these restrictions are not strictly necessary, but simplify exposition. For
instance, many of the results described below also apply to stochastic processes,
so long as transitions are local. Other assumptions, such as the uniformity of the
state space, though unrealistic, probably do not fundamentally affect complexity
of a given algorithm, but are needed to obtain closed form analytical expressions.
For instance, the scaling properties of an algorithm when applied to non-uniform
tasks are likely to match the scaling properties of the algorithm when applied to
an analogous class of uniform tasks. Also, uniformity of the state space provides
a convenient means for clearly defining what it means to scale a task, and allows
us to carefully model and evaluate the effect of structural bias in the state space
(e.g., by manipulating the values for b+, b-, and b=).

7.4.2 Unbiased Random Walks and Q-learning

In general, it would be desirable to have bounds on the expected time needed to
solve a problem initially. Such bounds would be useful since much of the time
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spent learning is accounted for in the first few trials when the agent thrashes
about in search of feedback (reward). Unfortunately, even for homogeneous tasks,
this search time cannot be determined without knowledge of the learner's initial
parameter values. For instance, proper initialization of a Q-learner's action-value
function will yield optimal performance from the outset. If the initial parameter
values do not encode any information about the task, then the learner is said
to be initially unbiased. In Q-learning, initially unbiased agents can be obtained
by using constant initial action-values (i.e., V(o,.)ESxAQ(s, a) = C). Even under
these circumstances the initial performance of the learner is difficult to quantify
analytically. A special case that is analytically tractable occurs when the initial
action-value function is uniformly zero.

Definition 8 (zero-initialized) A Q.learning system with an action-value func-
tion whose initial values are uniformly zero is said to be zero-initialized.

In the case of zero-initialized Q-learning, the agent performs an unbiased random
walk over the state space until it first encounters a non-zero reward. Here we
assume standard semantics for Q-learning, namely that the agent when following
policy selects the action with the largest action-value and breaks ties by randomly
selecting one of the maximal actions. In a zero-initialized system, all actions
initially appear equally good (or bad) since they all share the same action-value,
Moreover, the estimation error, obtained after each step and used to update the
action-value function, is zero until the agent receives a non-zero reward. Thus, in a
problem solving task, a zero-initialized Q-learner solves its first task by performing
a random walk.6 For homogeneous state spaces, a closed form expression can be
obtained for the expected duration of this random walk.

Theorem 3 In a homogeneous problem solving task, the ezpected time needed by
a zero-initialized Q-learaing system to perform the random walk needed to solve
the first trial is given by the expression

C1 * C2 [f+-]k [ (~± - ++ (7.6)

where
(1= 1- , c) -_ 2P )2',

= b+
P+=-b++ _ P_ = 1- P+,

6Indeed, since the reward received at the end of the task may only be used to update a few
states (exactly I in the case of 1-step Q-learning), the agent will perform a series of shorter and
shorter random walks, one for each trial until reward information gets propagated to more distal
states.
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Figure 7.9: Search time complexity as a function of state space depth.

and
b=

= b. b+ -L b'

and where i is the distance between S and G, and k is the depth of the state space
(with respect to G).

Corollary 4 For state spaces of fixed width and for P+ > 1/2, the expected search
time is exponential in the state space size.

Corollary 5 For state spaces of polynomial width and for P+ > 1/2, the expected
search time is moderately exponential in the state space size.

In Theorem 3, P= is the probability that the system, when choosing actions
randomly, selects an action that leaves the distance to the goal unchanged, and
P+ (and P-) is the conditional probability that the system chooses an action
that increases (decreases) the distance to the goal, given that it chooses one that
changes the distance. These transition probabilities capture the structural bias
inherent in the underlying state space. That is, for some problems the inherent
structure of the task is such that it tends to funnel the agent toward the goal. In
other cases, the structure of the state space may negatively bias the random walk
and substantially increase its expected duration.

Figure 7.9 shows a series of plots of expected solution time (Equation 7.6)
versus state space depth k for i = 10, and P+ E [0.45,0.551. When P+ > 1/2, the
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expected solution time scales exponentially in k, where the base of the exponent
is the ratio - - When P+ = 1/2, the solution time scales linearly in k, and whenp_'

P+ < 1/2 it scales sublinearly.

The case where P+ > 1/2 (negative biasing) is important for two reasons.
First, for many interesting problems it is likely that P+ > 1/2. For exam, .e,
if a robot attempts to build an engine by randomly fitting parts together, it is
much more likely to take actions that are useless or move the system further from
the goal than towards it. This follows since engine assembly requires a fairly
sequential ordering. Similarly, a child can be expected to take time exponential in
the number of available building blocks to build a specific object when combining
them at random. Of course, the state spaces for building engines and assembling
blocks are not homogeneous, but the negative bias inherent in their state spaces
are likely to have similar exponential effects on agents that initially solve tasks
using random walks.

Second, when P+ is only slightly greater than 1/2, it doesn't take long before
the exponent leads to unacceptably long searches. Figure 7.9 illustrates this point
dramatically; even when P+ is as small as 0.51 the solution time diverges quickly.
When P+ = 0.55 (i.e., the system is only 10% more likely to take a "bad" action
than a "good" one), the search time diverges almost immediately.

Theorem 3 applies only to zero-initialized Q-learning systems on homogeneous
problem solving tasks. When the task is non-homogeneous, the analysis breaks
down because the expected time needed to perform the random walk is difficult
to analyze. When the initial action-values are non-zero the analysis breaks down
because the agent's behavior is no longer completely random. For instance, ini-
tializing the action-values to a fixed positive constant yields a search that is biased
towards exploring previously untried actions. This follows since in this case each
time the action-value of a state-action pair is updated its value is reduced. The
more a state-action pair is executed the lower its action-value becomes. This, in
turn, favors the selection of actions that have been tried less often in the past,
resulting in more exploration than in a pure random walk. Conversely, initializing
the action-values to a fixed negative constant yields a search that avoids explo-
ration and prefers to repeatedly try previously used actions. This follows since in
this case each time a state-action pair is applied its action-value is increased incre-
mentally toward zero. The morea decision is selected, the greater its action-value
becomes and the more likely it is to be selected in the future.

Theorem 3 states that for P+ > 1/2, a zero-initialized Q-learner can be ex-
pected to take time exponential in the depth of the state space for the initial
solution in a homogeneous problem solving task. It is useful to determine if sim-
ilar complexity results hold for other initial action-values. Since these cases are
difficult to analyze formally, this question is addressed empirically. In particular,
three separate 1-step Q-learning agents were applied to a homogeneous problem
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solving task whose state space was systematically scaled in depth. The three
agents, named Q-, QO, and Q+, had action-value functions that were uniformly
initialized to -1.0, 0.0, and 1.0, respectively. The ' ;ision task is'shown in Fig-
ure 7.10. The goal state, G, is on the far left. The -tart state, S, is maintained
at a constant distance of 5 steps from the goal, as the state space is scaled in
depth, k. Because there is a 3:1 ratio of actions that increase the distance to the
goal to actions that decrease the distance to the goal, the state space is biased
against that goal state. The parameters that characterize the state space in terms
of Theorem 3 are: b+ = 3, b- = 1, b= = 2. The depth of the state space was
systematically scaled from k = 5 to k = 100. For each depth, the expected num-
ber of steps needed to solve the first trial was estimated by averaging the results
of 200 runs.7 The average first solution times for QO and Q+ are plotted versus
depth in Figure 7.1 la. Q- was unable to solve the task in a reasonable amount
of time under any circumstances since it tended to get stuck in local cycles that
never made progress toward the goal. The figure shows that Q+, aided by its
exploratory bias, significantly outperforms QO. However, it continues to scale
super-linearly in the depth of the state space. To determine whether the search
time scales exponentially in depth, the logarithm of the average solution time
is plotted versus depth in Figure 7.11b. This plot shows that, as expected, QO
scales exponentially in depth, but that Q+ scales sub-exponentially. Apparently,
the slight exploratory bias caused by the use of positive initial action-values is
sufficient to reduce the complexity of the initial search, even for problem spaces
that are intrinsically biased away from the goal. Nevertheless, for practical pur-
poses, the search time continues to lead to intractably long learning times since
it appears to be at best polynomial in the depth of the state space.

7.4.3 Analysis of LEC

The principal idea of both LEC and LBW is to reduce initial search by exploiting
information gained from external agents. LEC algorithms depend on immediate
feedback from a knowledgeable external critic to reduce feedback latency, while
LBW algorithms depend on other agents for alternative (often highly biased)
sources of experience.

The results presented in this subsection focus on LEC algorithms. In particu-
lar it is shown that in a homogeneous state space the BB-LEC algorithm has an
expected initial search time that is at most linear in the size of the state space.
This upper bound is an improvement over unbiased Q-learning, but still disap-
pointing because of its dependence on state space size. However, tighter upper
bounds can be obtained either by restricting the class of state spaces further or
by modifying the capabilities of the learner. Under these circumstances bounds

7After each run the agent's action-value function was reset to its initial value.
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Figure 7.10: The 1-dimensional homogeneous problem solving task used to assess
the effect of the initial action-value function on initial search. The start state
is maintained at a constant distance from the goal, G, as the depth of the state
space is scaled from k = 5 to k = 100.

on the expected search time can be obtained that 1) depend only on the length
of the optimal solution path and 2) are independent of the state space size.

Theorem 6 The expected time needed by a zero-initialized BB-LEC system to
learn the actions along an optimal path for a homogeneous problem solving task
of depth k is bounded above by

k k ISj * b (7.7)
critic

where Pcritic is the probability that on a given step the external critic provides
feedback, ISl is the total number of states in the state space, and b is the branching
factor (or total number of possible actions per state).

This upper bound is somewhat disappointing because it is expressed in terms
of the state space size, ISI, and the maximum depth, k. Our goal is to find
algorithms that depend only upon task difficulty (i.e., length of optimal solution)
and are independent of state space size and depth. Nevertheless, the result is
interesting for two reasons. First, it shows that when .e., > 1/2, BB-LEC isP_

- n improvement over unbiased Q-learning since the expected search time grows
at most linearly in k, whereas )-learning grows exponentially for zero-initialized
systems and apparently polyno (.ally for systems with fixed positive initial action-
values. Second. because this upper bound is inversely proportional to Pcritic, the
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Figure 7.11: Average solution time plots for QO and Q+. a) The average number
of steps taken in the initial solution to the task for QO and Q+ versus depth.
The exploratory bias afforded Q+ by its initial positive action-values leads to
performance that is significantly better than QO. b) The natural logarithm of the
average first solution time versus depth for QO and Q+. The graph confirms the
exponential scaling rate for QO and shows Q+ to scale subexponentially in depth.
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theorem shows that even infrequent feedback from the critic is sufficient to achieve
the linear upper bound. This effect was observed in Meliora-Ill-LEC, where even
infrequent feedback from the critic substantially improved performance.

The trouble with the BB-LEC algorithm, as described so far, is that the critic's
feedback arrives late. That is, by the time the learner receives the critic's evalua-
tion it finds itself in another (neighboring) state, where the feedback is of no value.
If the learner has an efficient means of returning to previously encountered states,
it can make better use of the critic's feedback. This idea leads to the following
results, which show that under appropriate conditions the search time depends
only upon the solution length and is independent of state space size.

Theorem 7 If a zero-initialized BB-LEC system uses an inverse model s to
"undo" non-optimal actions (as detected based on feedback from the external critic)
then the expected time needed to learn the actions along an optimal path for a ho-
mogeneous problem solving task is linear in the solution length i, independent of
state space size, and bounded above by the expression

[p12p= 1] * i. (7.8)

Similarly, if the task is structured so that the system can give up on a trial that
it fails to solve after a reasonable amount of time or if the system is continually
presented with opportunities to solve new instances of a problem, then previously
encountered situations can be revisited without much delay and the search time
can be reduced.

Theorem 8 A zero-initialized BB-LEC system that aborts a trial and starts anew
if it fails to solve the task after nq (nq >_ i) steps has, for a homogeneous problem
solving task, an expected initial solution time that is linear in i, independent of
state space size, and bounded above by the expression

p_(11_ P=)) * nqi. (7.9)

Corollary 9 A zero-initialized Q-learning system using BB-LEC that quits a trial
and starts anew upon receiving regative feedback from the external critic has an
expected solution time that is bounded from above by the expression

(P+(-P=)1 * (P=+(1 P)P+) (7.10)

'Tus theorem does not account for the time needed to learn the inverse model. It assumes
the inverse model is known a prorz.
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The crucial assumption underlying these results is that the learner has some
mechanism for quickly returning to the site of feedback; however, for some tasks
an explicit mechanism may not be necessary to decouple search time from the
state space size. In particular, if the optimal decision surface is smooth (i.e.,
optimal actions for neighboring states are similar), then action-value and bias
functions implemented using approximation techniques that locally interpolate
(e.g., CMACs, or Neural Nets) can immediately use the critic's feedback to bias
the impending decision. Or alternatively, if Q and B are approximated using tech-
niques that generalize non-locally (e.g., classifier systems [Holland et al., 1986]),
then the critic's feedback can be expected to transfer to other non-local situations
as well. Although not reflected in the above theorems, generalization techniques
like these probably will enable LEC to be useful even when explicit mechanisms
for inversion are not available.

7.4.4 Analysis of LBW

LEC algorithms are sensitive to naive critics. That is, if the critic provides poor
feedback, the learner will bias its policy incorrectly. This limits the use of LEC
algorithms to cases in which the external critic is skilled and attentive. Learning
By Watching, on the other hand, does not necessarily rely on a skilled, attentive
critic. Instead, the learner gains additional experience by interpreting the behavior
of others. If the observed behavior is skilled so much the better, but an LBW
system can learn from naive behavior too.

Theorem 10 For a population of naive (zero-initialized) Q-learning agents using
LBW, the expected time to learn the actions along an optimal path decreases to
the minimum required learning time at a rate that is Sl(l/n), where n is the size
of the population.

Without help by other means, a population of naive LBW agents may still
require time exponential in the state space depth. However, search time can be
decoupled from state space size by adding a knowledgeable role model.

Theorem 11 If a naive agent using LB W and a skilled (optimal) role model solve
identical tasks in parallel and if the naive agent quits its current task after failing
to solve it zn nq steps, then an upper bound on the time needed by the naive agent
to first solve the task (and learn the actions along the optimal path) is given by
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As with the LEC results, Theorem 11 relies on the agent having a mechanism
for returning to previously encountered states. Intuitively this result follows since
when a naive agent and a skilled agent perform similar tasks in parallel, it is
possible for the naive agent to move off the optimal solution path and find itself
in parts of the state space that are never visited by the skilled agent. Starting
over is a means for efficiently returning to the optimal solution path. Again, we
expect LBW systems to perform well on tasks that have decision surfaces that are
smooth or that otherwise lend themselves to function approximation techniques
that generalize.
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8 Limitations and Future Work

This chapter discusses some of the limitations of the algorithms described so
far and points out a number of difficulties that may arise when applying these
techniques to more complex and realistic control problems. To overcome these
difficulties extensions to the previously described algorithms are proposed. While
these extensions seem plausible, they are necessarily speculative. To date none
has been implemented or tested. Approaches that fall outside of the CR-method
framework are also considered.

8.1 Separation of Perceptual and Overt Con-
trol

The fundamental assumption of the CR-method is that at each point in time
control is achieved be first identifying the external state (state identification) and
then executing the appropriate overt action (overt control). To ensure that the
external state does not change, only perceptual actions are allowed to be executed
during state identification. This restriction has two important consequences: 1)
it constrains the control strategy learned by the agent to one that separates per-
ceptual and overt control control, which may be suboptimal; 2) it limits the class
of decision problems that .can be solved at all using the CR-method.

8.1.1 Non-Optimal Control

The CR-method restricts the embedded decision system's control strategy to one
that performs overt actions only from consistent internal states. While this ap-
proach may be able to optimize the expected return v .n respect to this restricted
class of control strategies (i.e., strategies that first iuentify and then control the
external state), such systems cannot learn optimal control policies for internal
decision problems that require the execution of overt actions from inconsistent
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internal states. An example of such a decision problem is illustrated in Figure 8.1.
The figure shows a task in which a control policy that performs an overt action
from an inconsistent internal state outperforms the best policy that executes only
perceptual actions from inconsistent internal states. The external part of the
task involves navigating from a start state to one of two possible reward sites
(Figure 8.1a). Trials begin in state S and end when the agent receives a non-zero
reward (either G1 or G2). On half of the trials, the agent receives reward G1 upon
entering the upper cell, and G2 upon entering the lower cell. On the other half of
the trials, the rewards are reversed. At the junction cell there is an arrow on the
ceiling, which indicates the direction to G1, the larger reward. This information
is not automatically registered by the agent but can be obtained by performing
the perceptual action "look" at the junction. The corresponding internal decision
problem is shown in Figure 8.lb. The internal state J is incorsistent. It repre-
sents the situation where the agent is at the junction in the external task but is
not looking at the arrow. In this state, the overt actions "up" or "down" have
inconsistent effects that depend upon the direction of the arrow. By performing
the "look" action, the agent can resolve the ambiguity, reach a consistent inter-
nal state (either J T or J 1), and then perform an overt action that maximizes
the expected return. Depending on the difference between G1 and G2 and the
cost of executing the perceptual action "look," a policy that executes the overt
"up" action in state J may on average outperform policies that always resolve
the inconsistency. For instance, if the difference between G1 and G2 is less than
the cost of the "look" action, it is better on average to perform an overt action
directly from state J. Unfortunately, systems based on the CR-method are con-
strained to control strategies that always resolve inconsistencies, even if the cost
of resolution outweighs the benefit. As long as the decision system is constrained
to execute overt actions only from consistent internal states, there will be tasks
like this one that the agent cannot perform optimally. The CR-method does not
provide a mechanism for trading off the cost of perception against the benefit of
acting without knowledge.

The Q-CUP Algorithm

One approach to overcoming this limitation is to abandon the distinction between
perceptual and overt actions and to take a more careful look at the failure of Q-
learning (cf. Chapter 5). Recall that in Chapter 5, it was shown that inconsistent
decisions interfere with Q-learning by having action-values that average the ex-
pected returns of the external decisions they represent. These inaccurate estimates
(utility aberrations), in addition to inaccurately estimating the true utility of per-
forming a given action at a specific point in time, also interfere with estimating
the action-values. While it is unlikely that the utility aberrations for inconsistent
decisions can be eliminated, it may be possible to prevent them from interfering
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with the action-value estimates of consistent decisions. That is, suppose we are
able to detect inconsistent decisions (say, using the techniques described in the
previous chapters). Suppose further that standard Q-learning is used to learn a
control policy for both overt and perceptual actions, except that instead of using
a fixed updating rule, like the 1-step corrected truncated return, the updating
rule is always based on multi-step estimators whose correction term is the util-
ity of a consistent state. That is, after executing a given decision, rewards are
collected until the agent encounters a consistent state; at that time a return es-
timate for updating the action-value for the earlier decision is constructed from
the accumulated, appropriately disounted rewards and the utility estimate for
the current consistent state. Under these circumstances, it should be possible
to estimate accurately the sampied average of the action-values of the external
decisions represented. The action-value for an inconsistent decision depends on
the relative frequency that external decisions represented by that decision are
sampled (or enco intered', and in general the inconsistent decision will not accu-
rately estimate te action-values of the external decisions it represents. However,
the action-values for consistent decisions should be accurate with respect to the
external decisions they represent. We call this integrated approach to control
the Q-CUP algorithm (for Consistent UPdating). The Q-CUP algorithm may be
able to outperform the CR-method on certain decision problems. For instance,
the Q-CUP algorithms should be able to learn the optimal policy for the task in
Figure 8.1, since in this case, the sampled average of the return obtained after
executing either the "up" or "down" overt actions from state J is greater than
the expected return obtained by first looking at the arrow to disambiguate the
situation. Also, notice that if the difference between G1 and G2 is large enough to
make the "look" action worthwhile, the Q-CUP algorithm should learn to perform
that action. While the Q-CUP algorithm appears to be able to outperform the
CR-method on the task in Figure 8.1, it may not always be appropriate, since the
policy it learns may be unstable and its .erformance may be erratic. This can be
demonstrated by modifying the task in Figure 8.1 as follows:

1. Increase the difference between GJ. and G2 to some large value (e.g., G1 =
10, G2 = 0),

2. Adjust the distribution of trials s.) that G1 is almost always found in the
upper cell (e.g., 99% of the time).

3. Change the dynamics of the problem so that an incorrect up or down action
returns the system to the start stale S.

Under these circumstances, an agent using the Q-CUP algorithm will almost al-
ways initially learn to execute the "up" action from state J since with high prob-
ability this action will be optimal for the initial series of trials. However, at some
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point the agent will encounter a trial where the reward is in the lower cell. On
this trial, the agent will get stuck in a loop, continually trying the "up" action
until the action-value for the "up" action in state J is reduced enough to permit
another action or until the agent selects an alternate action at random. This os-
cillation in the agent's action-value function will tend to repeat indefinitely and
its performance will continue to be unnecessarily long for the uncommon case in
which the reward is in the lower cell.

On the other hand, an agent using the CR-method on this task would have
an action-value function that is more stable. While it might be slightly less ef-
ficient in the common case (reward up) it would be significantly more effective
in the uncommon case (reward down). Indeed, depending upon the learning rate
and exploration strategy used, an agent using the CR-method may on average
outperform an agent using Q-CUP.

The Q-CUP algorithm has not yet been implemented or tested, and it is dif-
ficult to speculate on its specific performance characteristics. However, because
it does not distinguish between perceptual and overt actions, it overcomes one of
the major limitations of the CR-method. Whether it works well in practice or has
limitations of its own remains to be seen.

Neural Network Algorithms

Other alternatives to the CR-method that allow for the free intermixing of overt
and perceptual actions are some of the recent neural network algorithms [Jordan
and Rumelhart, 1990; Schmidhuber, 1990b; Thrun and Moller, 1991; Nguyen and
Widrow, 1989]. In these algorithms, no explicit estimate of the future expected
return is maintained or used to update the controller's policy. Instead, adapta-
tion of the mapping between sensory inputs and control actions is achieved by
modifying the weights of the network using a gradient descent procedure. In par-
ticular, at each point in time, the gradient of the immediately received reward
is computed with respect to the weights in the network (using backpropagation).
These immediate gradients, accumulated over time, are then combined to yield
an approximation of the gradient for the total discounted return, which in turn
is used to adjust the network's performance. Since these methods do not depend
upon explicit utility estimates, as in Q-learning, they do not suffer as much from
utility aberrations. However, they do have a number of drawbacks of their own.
First, since the network is adjusted based on actual rewards received (and has
no notion of an underlying Markov decision process), these algorithms may suffer
from the same instabilities expected to plague the Q-CUP algorithm. Second, in
order to perform credit assignment properly for temporally delayed rewards, it is
necessary to perform backpropagation steps that go back in time. This process
requires the system to keep a history of neuron activations and weight values, and
requires a differentiable model of the domain's forward dynamics (used during
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signal
cell

Figure 8.2: A navigation task that requires memory. In this task the position of
the reward is indicated by the arrow in a signal tile. We assume the agent can
only sense features of the cell it currently occupies. To solve this task we would
like the agent to first determine and remember the direction of the arrow and then
navigate to the appropriate location. The systems described in this dissertation
have no means of remembering and using any information other than that which
is immediately perceivable.

backpropagation). Finally. since these algorithms are based on backpropagation
(an approximate gradient descent method), they may get stuck in local minima
and fail to converge on an optimal policy. Jordan [Jordan and Rumelhart, 1990]
and Schmidhuber [Schmidhuber, 1990b] have done the most work on these al-
gorithms. Schmidhuber, in particular, has described an algorithm for recurrent
networks that is capable of learning decision tasks that are non-Markov. However,
the results reported so far are preliminary and involve very simple problems (quite
a bit easier than the GB-task). In their current state, these algorithms do not
appear to be scalable to more complex tasks. Nevertheless, additional research
may yield more powerful algorithms based on these direct gradient methods.

8.1.2 Restrictions on the Task Domain

A second limitation of the algorithms described so far is that they are applicable
only to tasks in which every external state can be identified using perceptual
actions only. This restriction excludes tasks in which the agent must perform
overt actions to gain needed state information. For example, in the block stacking
domain, tasks that require the agent to move blocks in order to identify the
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external state (e.g., unstack a block in order to see what is behind it) are not
permissible. Navigation tasks where the robot cannot discern the external state
from immediately visible cues are also beyond the scope of the present algorithms.
An example of this type is shown in Figure 8.2. In this task, the robot's objective
is to navigate to a cell that contains food (a reward). As in the task depicted in
Figure 8.1, the position of the reward varies from trial to trial and is indicated
with an arrow that is located in one of the cells. If the robot's internal state
at each point in time is only determined by attributes of the cell it immediately
occupies, then a robot will be unable to learn a reliable control strategy since it
will be unable to remember the direction of the arrow in the signal cell. Ideally, the
agent would execute overt actions that navigate to the signal, sense and remember
the value of the arrow, navigate to the junction, recall the information about
the arrow, and select the next appropriate move. Unfortunately, the systems
described in this dissertation support neither the use of overt actions for state
identification (navigating to the signal cell) nor any mechanism for recording and
recalling relevant aspects of previously visited positions. Both of these processes
are necessary to solve the task in Figure 8.2.

Even though the Q-CUP algorithm allows for the execution of overt actions
in inconsistent states, the Q-CUP algorithm will also fail to solve this task with-
out any means for explicitly remembering the value of the signal arrow once the
robot leaves the signal cell. A simplifying assumption implicit in all of the algo-
rithms described so far is that the internal state space is defined solely in terms
of the agent's immediate precepts. The agent is totally situated in that after
each overt action its internal state is essentially flushed and reacquired based
only on immediate sensory inputs. Clearly, this is a very restrictive assumption.
Unfortunately, very little is currently known about how to extend these state
space models efficiently to include features of past situations. This limitation
represents an exciting challenge to this approach to adaptive perception and ac-
tion. Recent work on learning finite state automata by exploration may provide
a reasonable starting point for attacking this problem [Rivest and Schapire, 1987;
Mozer and Bachrach, 1989]. Approaches that distinguish internal states based on
differences in the agent's transition history [McCallum, 1991] and approaches that
combine the CR-method with buffered sensory inputs or deictic memory modules
may also yield useful algorithms.

Reinforcement learning algorithms based on recurrent neural networks offer
another possible approach to this problem since the output of a recurrent net-
work at a given point in time can depend upon the total sequence of inputs it
has received up to that time [Schmidhuber, 1990c; Williams and Zipser, 1988;
Simard, 1991; Pineda, 1987]. In principle, these networks can learn to encode and
remember relevant past information in their hidden units as needed to learn an
optimal control policy. As of this time, I have not experimented with adaptive
controllers based on recurrent neural networks. However, in light of their ten-
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dency to get stuck in local minima, it is doubtful that existing algorithms can
be used to solve the task in Figure 8.2. Nevertheless, continued experimentation
with recurrent neural networks for adaptive perception and action is certainly
wrranted.

8.2 State Space Size

Another issue that requires further examination is the rate at which the size of
consistent state spaces grows as the complexity of a decision task is increased. For
example, when a task can be accomplished in several different ways (any of which
might be optimal), the size of the minimal consistent representation for that task
tends to grow as the product of the sizes of the state spaces needed to represent
each of the individual approaches to the task. An example from the block stacking
domain illustrates the problem more clearly.

Recall that for the GB-task, each pile contains exactly one green block. This
restriction was imposed to ensure that the robot's two marker sensory-motor sys-
tem is adequate to register all the information necessary to represent the task
consistently. If two or more green blocks are allowed in the pile, then a consistent
representation (with respect to picking up a green block) must encode informa-
tion about the amount of work needed to clear and pick up each individual green
block. That is, to solve the task optimally, the robot must analyze each green
block to determine which one is easiest to pick up. For the GB-task (with one
green block) the attention frame marker is used to register the number of blocks
above the green block, and each state in the consistent internal representation
is associated with a unique stack height. For a GB-task with multiple blocks, a
marker is needed to register the stack height of each green block in the pile, and
each consistent internai state represents a unique combination of stack heights
- resulting in a state space that is roughly an n-fold product of thc state space
for the single block GB-task (where n is the number of green blocks in the pile).
This stack height information is needed to consistently represent the state of the
external world. Failing to mark and register even one green block opens the door
for inconsistencies since that unmarked green block may be the easiest one to pick
up.1

Similar, but even more dramatic growth in the state space size occurs for more
complex tasks. For instance, suppose the robot receives a reward for assembling

1Strictly speaking, the minimal consistent internal representation need not encode the stack
heights of each and every green block. Actually, only knowledge of the easiest green block, its
stack height, and some hand information is needed to define the consistent states. However,
in order to determine the easiest block to pursue, the agent must compare the stack heights of
each of the green blocks, and given the organization of the sensory-motor system this comparison
requires marking and registering the stack heights of each block.
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configurations of several blocks. Take the stack red-on-green-on-blue, for example.
In this case, to perform optimally the robot must consider all possible combina-
tions of red, green, and blue blocks that could be used to construct the desired
stack. For optimal control, it is not sufficient to find just any red, green, and blue
blocks; all combinations must be considered and information about all red, green,
and blue blocks must be registered.

Large state spaces also result when there are multiple sources of reward. A
robot that is rewarded for picking up a green block or for assembling the stack red
on blue must consider which one of the subtasks to pursue. A rat that receives
rewards for satisfying its diverse bodily needs (feeding, drinking, resting, mating,
etc.) must in general consider the appropriateness of pursuing each activity in
light of the current situation, and consider the effect of pursuing one activity on
its ability to satisfy other needs later.

In all of these examples, large state spaces are needed to guarantee that the
agent has sufficient information to perform optimally these multifaceted tasks.
Unfortunately, these large state spaces 1) put an unrealistic burden on the sen-
sory system (to track and monitor continually every potentially relevant object)
and 2) lead to slower learning of each individual subtask by inhibiting passive
abstraction/generalization with an overly large state space.

One approach to reducing this scaling problem is to introduce additional struc-
ture into the decision system that partitions the ovtrall decision problem into its
constituent pieces. That is, instead of using a single monolithic internal represen-
tation and a single monolithic policy function, the decision system is composed of
a set of modules, each of which is responsible for learning to represent and perform
a single subtask of the overall decision problem. We call one of these modules a
schema. In the case of a block stacking task where multiple configurations yield a
reward (e.g., holding a green block or building a red-on-blue stack), each schema
would learn to represent and perform consistently one of the subtasks.

Roughly, each schema would correspond to a complete decision system in itself.
It would consist of an identification routine and an overt control component; it
would generate and maintain its own internal representation; and it would use the
same algorithms described previously to adapt itself. The key difference is that
each schema's adaptation would be based on a single (restricted) type of reward
(i.e., the reward associated with the subtask it was performing). This reward
type could be identified either a priori (say through an innate set of different
reward types such as hunger-reward, thirst-reward, etc.) or by a set of specific
learned conditions that classify the reward (e.g., reward consistently associated
with holding a green block). In any case, the internal representation learned would
be aimed at consistency with respect to a specific narrow class of reward, and the
control policy would aim to maximize the accumulation of the specific reward
on ly.
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Another important aspect of schemas would be the explicit incorporation of
variables (or entities) which could be bound to specific objects in the external
world and used to instantiate different instances of a schema. For instance, a
single schema could be learned to control the process of picking up a single green
block. This scheme might have a single variable, which would be bound to the
specific green block to be picked up. At any point in time, the utility values of
the internal state of this schema would represent the utility of the external world
with respect to picking up the green block bound to the schema. Given a single
schema of this type, the agent could then perform a series of "bind-and-evaluate"
operations to search for the best green block to pursue when more than one was
present.

In general, given a set of schemas and their instantiations, overall control could
be achieved by first evaluating the state of the external world with respect to each
instantiation and then choosing to follow the actions dictated by the schema with
the largest utility.

The major disadvantage of this modular approach is that it may lead to non-
optimal control. That is, by greedily performing the schema with the largest
utility, the agent may fail to maximize its long-term reward since it may be possible
that execution of another schema, which itself yields a lower immediate return, sets
up a third schema that yields a larger reward. If the cumulative return of these two
schemas is greater than the return achievable by the single maximal schema, then
non-optimal performance results. For these cases, more global algorithms (like a
monolithic decision system) that consider the utilities of performing combinations
of tasks would perform better. However, in many cases, P greedy algorithm may
suffice.

One of the major advantages of the prop 3sed modular approach is that it
reduces the overall size of the internal state space and policy function. For a
monolithic decision system the state space (and the domain of the decision policy)
has a size that scales as the cross product of the sizes of each individual subtask,
Nhereas the modular approach has a total space requirement that scales linearly
in the number of subtasks (i.e., the total size is the sum of the individual state
spaces).

Also, the total sensing requirements of the agent can be reduced by committing
to the complete execution of a given schema. That is, at the beginning of a task,
the agent could evaluate the utility of pursuing each schema and select the best one
for execution. If the agent then commits to performing that activity, it no longer
needs to perform subsequent sensing operations to evaluate the other schema. in
general, any number of high level control strategies can be used to trade off sensing
and overt performance.

A third advantage of this modular approach is that the time needed to learn
individual schemas should be substantially reduced compared to the learning time
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for a monolithic decision system. This follows since the individual internal state
spaces needed to represent each subtask are significantly smaller than the state
space needed to represent consistently the conjoined monolithic task.

To date, we have done very little work on developing this schema-based control
architecture other than to recognize the need for it and speculate on how schemas
could be learned and controlled. Although many issues remain unresolved, we are
confident that a modular approach of this type will be useful for managing the
state space size and the learning rate as task complexity is increased.

8.3 Other Areas for Future Research

There are a number of other topics for future research that lie on the critical path
between the ideas proposed in this dissertation and their useful application to real
systems.

The study of active perception is in its infancy and is an area that needs fur-
ther development. The simulated sensory-motor system used in Meliora is overly
simplistic, unrealistic, and specifically designed to match the needs of the GB-
task. The deictic sensory-motor systems used by Agre [Agre, 1988] and Chapman
[Chapman, 1990b], though more sophisticated and more general purpose, are also
simulated. These principles of active perception need to be validated on real
physical systems. Experimentation on real systems, in addition to validating the
feasibility of active perception and deictic representations, is also likely to sug-
gest new visual analysis operations and indexing strategies that might have been
overlooked otherwise [Swain, 1990; Wixson, 1991].

It is also necessary to develop more efficient implementations for the CR-
method. Meliora used tables to implement the various algorithms described above.
While algorithms based on tables are convenient for exposition purposes and easy
to implement, they require too much space for larger scale tasks. Implemen-
tations based on neural networks or other more concise function approximation
techniques need to be explored. Also Meliora's internal state space was defined
precisely by the input vector generated by the sensory-motor system. When this
vector contains redundant or useless information, it introduces unnecessary dis-
tinctions between states and increases the size of the internal representation. An
approach that combines the perceptual control process used in Meliora and the
input generalization techniques described by Chapman and Kaelbling [Chapman
and Kaelbling, 1991] or Tan [Tan, 1991b] could lead to even more compact and
task-specific internal representations.

Also, if reasonable learning rates are to be achieved, the cooperative mecha-
nisms described in Chapter 7 (or other algorithms like them) must be developed
further. Techniques for recognizing and interpreting the behavior of others is cen-
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tral to this endeavor. More powerful communication and signaling protocols can
also be expected to facilitate learning.

Finally, perhaps the most important work that can be done to validate and
advance the ideas presented here is to apply them to the control of a real physical
system - perhaps a real block-stacking robot, or a robot that learns other chil-
dren's games (e.g., piece-in-hole games). Building such a system would no doubt
uncover any number of assumptions and difficulties that have been unknowingly
abstracted out of the formal model and our simulated environment. Just a few
issues that are likely to arise include: the weaknesses of discrete state-time con-
trol models, the need for memory and state, the need for hierarchical structures
to organize both the fine grained and large-scale structure of realistic tasks, and
the need to perform certain actions simultaneously.
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9 Conclusions

Control is the process of directing interaction with an external environment in
order to bring about some desirable outcome. This process involves both sensing
and action - sensing to gain information and action to effect change. In both
classical control theory and Al it is common to begin by assuming that the control
system has a fixed set of sensors that provide it with all the relevant information
needed for decision making. In AI, it is common to assume the existence of an
objective internal representation that uniquely labels and describes properties of
all of the potentially relevant objects in a task domain. While this assumption may
be reasonable for tasks that are narrow in scope or well understood in advance,
it is unrealistic for more complex tasks that have diverse sensory requirements or
that are poorly understood ahead of time. Under these circumstances systems
that have flexible but limited access to the environment are more appropriate.
The Visual Routines model of human spatial vision [Ullman, 1984], subsequent
work on deictic representations [Agre and Chapman, 1987; Agre, 1988; Chapman,
1990b], and other recent work [Ballard, 1991; Swain, 1990; Rimey and Brown,
1990; Wixson, 1990; Wixson and Ballard, 1991] demonstrate the potential utility
of active perception. This dissertation extends this line of research by considering
the application of reinforcement learning to the adaptive control of perception and
action. Our aim has been to develop algorithms by which an autonomous agent
can learn not only the overt actions needed to perform a task, but also perceptual
control strategies for generating an adequate, yet efficient, task-specific internal
representation.

To study this problem a series of programs, collectively called Meliora, were
developed in an attempt to build a system that could, using active perception
and a deictic representation, learn to solve simple block manipulation tasks. Us-
ing the block-stacking task as a guide, a formal model of the control problem
facing embedded decision systems was described. This model formalizes the effect
of an agent's sensory-motor system in establishing the relationship between an
abstract Markov model of a task and the decision problem seen by the embedded
controller. The model is used to show that irilelligent systems invariably face de-
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cision problems that are highly non-Markov and that cannot typically be learned
using standard reinforcement learning methods. It was shown that improper con-
trol of the sensory system leads to perceptual aliasing - states in the internal
representation that confound functionally disparate states in the Markov model of
the external task. Perceptual aliasing was shown to interfere with reinforcement
learning by prohibiting, at certain points in time, the accurate estimation of the
utility of performing an action.

A new decision procedure, called the Lion algorithm, was developed to over-
come these difficulties and was demonstrated on the GB-task. The Lion algorithm
was shown to be a specific instance of a more general technique, called the Con-
sistent Representation (CR) method. The principal idea of the CR-method is to
separate control into an identification stage followed by an overt control stage.
During identification the agent performs perceptual actions to collect informa-
tion needed to generate a consistent internal state. During overt control, this
consistent state is used to guide selection of the next overt action. Both the iden-
tification and overt control stages are adaptive. In Meliora, adaptive overt control
was achieved using variations on 1-step Q-learning. Adaptation of the identifica-
tion procedure is based on detecting and eliminating inconsistent internal states
from the internal representation. Several methods for detecting inconsistent in-
ternal states were proposed and demonstrated in Meliora, and related work by
Chapman and Kaelbling [Chapman and Kaelbling, 1991] and Tan (Tan, 1991a]
was described.

Next, the effect of unbiased search on the learning rate was addressed. It was
shown that when an agent has little or no prior knowledge of a task and when
reward is sparse or delayed, lack of initial guidance combined with lack of feedback
can lead to unstructured searches and excessive learning times. Two cooperative
mechanisms, Learning-with-an-External-Critic (LEC) and Learning-By-Watching
(LBW), that reduce search were described and analyzed. Formal analysis showed
that for a restricted class of decision problems, these algorithms have expected
learning times that are dependent on the length of the optimal solution path and
independent of the state space size. Experimental results on the GB-task confirm
these results and showed LEC and LBW to improve significantly the performance
of Meliora. Part of the performance improvement was due to a reduction in
the latency between overt action and feedback; however, the additional feedback
available through these mechanisms was also used to detect inconsistent internal
states more quickly, facilitating identification.

The work described in this dissertation only partially achieves our objective
to develop algorithms for adaptive perception and action. The decision to split
perceptual and overt control into separate stages precludes the application of the
CR-method to tasks that require overt actions for identification. Moreover, even
when the CR-method is applicable, there exist tasks that it cannot solve opti-
mally. Nevertheless, the CR-method represents initial progress towards a theory
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of adaptive control that incorporates active perception. Furthermore, it appears
that the notion of consistency can be used to extend the CR-method and derive
alternative methods that address some of the current limitations. The Q-CUP
algorithm and the schema-based approach to task decomposition are examples of
two such directions for future research.
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A Proofs for Search Analysis
Theorems

Following are the proofs for the theorems given in Chapter 7.

Theorem 3: In a homogeneous stale space, the expected time needed by a zero-
initialized Q-learning system to learn the actions along an optimal solution path
for a problem solving task is bounded below by the expression

cI * C2 [±]ki-1 + 1- 2 2P } (A.1)

where

Cl - (A.2)

c2 = (1-2P+)2' (A.3)

P= = b=b++b (A.4)

b+ (A.5)P+-b+ + b-'

and
P_ I 1- P+, (A.6)

and where i is the length of the optimal solution, and k is the depth bound on the
state space (with respect to the goal).
Proof:
There are two keys to this proof. The first is to recognize that on its initial trial
a zero-initialized Q-learning system performs a pure random walk that begins in
the start state and ends in the goal state. The second is to recognize that the
expected length of a random walk on a k-bounded homogeneous state space is the
same as the expected length of the random walk on an equivalent 1-dimensional
state space. That is, because all states (except the boundaries) have the same con-
nectivity pattern, states whose distance to the goal are the same can be collapsed
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into a single node. Similarly, all boundary states can be collapsed into the same
node. Thus, results for the expected search time required by a zero-initialized Q-
learning system can be obtained by analyzing random walks on a 1-dimensional
state space.

Let's begin with some notation. Let b-, b+, and b= be the number of actions
that, in any given state, cause the system to decrease, increase, and leave the
distance to the goal unchanged, respectively. Define P+ and P_ as the conditional
probability that the system, when choosing randomly, takes an action that in-
creases or decreases the distance to the goal, respectively, given that a distance
changing action is chosen. Also, define P= as the unconditional probability that
the system chooses an action that leaves the distance unchanged. Then,

b+ (A.7)1+-b+ + b-'

P_= l- P+, (A.8)

and b=(A.9)
P= = =+b+ + b-"(A9

Finally, let E . denote the expected length of a random walk on a bounded (k-+ 1)
length 1-dimensional state space that begins in state i and ends when the system
first encounters state j. Also, assume the states in the state space are numbered
consecutively, 0, 1, 2, ... , k - 1, k.

A closed form expression for E o can be obtained by expressing E k 0 recursively
and solving the recurrence. To do so, we momentarily assume P= = 0 and make
the following observations. First, notice that for ij > 0, 0 <5 k, k - i < n and
0 < k - j, k - i - j n - j

Eik_, = E (A.10)

This follows since the regions of the state spaces involved in these two random
walks are homomorphic. Also notice that in general for i < k < j

Ei',, = Eink + En,,, (A.11)

Finally, note that in general En, = 0.

Using Equation A.10 and Equation A.11 we have, for k > 1
E = k + (A.12)ko = k,i+ 1,0

k-= + E k  (A.13)= k-1,0o 1,0.

Next, an expression for E "
0, in terms of expectations for a k - 1 state space can

be obtained by expanding the expectation. For k > 1,
Ek E

,,= p_ + [1 + 4,o] * P+. (A.14)
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But by Equation A.10 & A.11,
2,= E, 1 + E' (A.15)

SE 1, + Elo. (A.16)

Thus, Equation A.14 can be rewritten asE kE k- 1

Z10 = P_ + P+[1 + Elo + E1,o, (A.17)

or after separating terms,
k 1 +P+E1

1 + P (A.18)

Returning to Equation A.13, we have for k > 1

E ,o k-1 1 + P+ Elk,;' (.
Ej*O= Ek-1,o + I (A 19)

Next, notice that by Equation A.11, for k > 1
Ek-1 - E k-1+ Ek-1 (A.20)

k-1,0 - k-1,1 1,0

Which by Equation A.10 leads to
Ek-1 k-2 Ek-1 (.1

Ek-,o = Ek_ ,0 + E1'o (A.21)

or solving for E1,o
Ek-1 k-1 k-2 (A.22)1,o - Ek-1,0 - k-2,0.

Substituting Equation A.22 into Equation A.19 yields a recursive definition for

E P [-E k- + + E [ o k-2
= Ek-,o + 1 + + kE1,0  -2EOJ (A.23)Ek 0 k-i -P+

Factoring terms yields

Ek 1 k_ 11 2P
k'o= ( P+ E-4,o ( Ek- ,o + 1 (A.24)

Initial conditions for the recurrence can be obtained by noticing that

Eo,0 = 0 (A.25)

and by expanding the expectation

E 1,,= (1 + E',O)P+ + (1)P_, (A.26)
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which when solving for E1,0 yields
1

El',- 1P- (A.27)

To simplify notation, let ak = E, o, c1 =J* and= . Then for k->"1,
Equation A.24 can be rewritten as

ak+2 = clak+2 + coak + c1, (A.28)

where ao = 0 and a,=-'. Equation A.28 is a non-homogeneous linear recur-
rence equation that can be solved using generating functions [Roberts, 1984]. In
particular, solving the recurrence [Whitehead, 1991] yields

.0_(1- 2P+)2 .P (I - 2P+) (1- 2P+)2 '  (A.29)

A general expression for Eiko can be obtained from Equation A.29 by noting
that E k  E k  _, I_ k-

,=, kO- k i E , O -i1 (A.30)

which when combined with Equation A.21 yields

,,0 (1-'"P+' P - + 7-2P+" (A.31)

Recall that the derivation of Equation A.31 is based on the assum,,tion that
P= 0. An expression for EikO for the general case where P= 0 0 can be obtained
by noticing that E k

0 in the general case is just Equation A.31 multiplied by the
expected time needed to take an action that changes the distance to the goal.
Because action selections are independent, the time needed to choose a "distance
changing action" is a geometric random variable with mean ., k1 - P=). Thus,

1.P= * - 2P+)2 [[1 -P+ -I + 1 -2P+ ' (A.32)

Equation A.32 is the expected search time needed by a zero-initialized Q-
learning system to first solve a task on a homogeneous k-bounded state space
that begins i steps from the goal state. For 1-step Q-learning, the system will
have learned at most the last step along the optimal solution. Q-learning algo-
rithms that use multi-step estimators may learn more steps along the optimal
path. In fact, it is possible (albeit exceedingly unlikely) that they will correctly
learn all the steps along an optimal solution path .n one trial. In any case, a zero-
initialized Q-learner must solve at least the first trial by random search. Thus,
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Equation A.32 provides a lower bound on the expected learning time.
3

Theorem 6: The expected time needed by a zero-initialized BB-LEC system to
learn the actions along an optimal path for a homogeneous state space of size k is
bounded above by

kkcr IS * b (A.33)Pcritic

where Pcritic is the probability that on a given step the external critic provides
feedback, ISI is the total number of states in the state space, b is the branching
factor (or total number of possible actions per state) and k is the depth of the state
space.
Proof:
The proof is based on the idea that, because the state space is recurrent, the system
will eventually either solve the task or receive feedback from the critic for every
possible state- action pair in the state space. By subsumption, the system will have
learned (i.e., be appropriately biased with respect to) the actions along an optimal
solution path once it has received feedback for all possible state-action pairs. Thus,
a weak upper bound on the expected time needed to learn an optimal policy for
states along an optimal path can be obtained by determining the expected time
needed to receive feedback for every state-action pair, given that the agent has
not leaned the optimal actions along an optimal trajectory first.

Let n&, (t) denote the number of state-action pairs for which the system has
received feedback from the critic by time t. We will say that a state-action pair is
known if when the system tried the pair it received feedback from the critic. Notice
that nknuw(O) = 0, and nk,, monotonically increases in time, as the system receives
feedback for new state-action pairs. Since there are at most ISI * b state-action
pairs, we would like to know the expected time required for nk,(t) = ISI * b.

This can be obtained by determining the rate at which nkn, is expected to
increase. nkw increases at the expected rate of at least Piti,:k. That is, on
average, the system can expect to receive feedback for an unknown state-action
pair at least every klP,,ri, steps. This follows since in any sequence of k con-
secutive steps the system must either solve the task (i.e., take k correct actions)
or take an action that is non-optimal. But the system will take a non-optimal
step only if the corresponding state-action pair is unknown. Thus, every k steps
the system either solves the task or tries an unknown state-action pair. Finally,
since the critic provides feedback with probability P,,,,, it takes on average at
most k * 1/P,, steps before the system tries an unknown state-action pair and
receives feedback from the critic.
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Thus, the expected time for nk,.,(t) = 1SI * b, is at most

ISI * b (A.34)

k

or
k , S * b. (A.35)

EP"

Theorem 7: If a zero-initialized BB-LEC system has access to an inverse model,
then the expected time needed to learn the actions along an optimal path for a
homogeneous state space is linear in the solution length i, independent of state
space size, and bounded above by the expression

P_(*- P=) i. (A.36)

Proof:
This theorem is based on the idea that with an inverse model and an external
critic, the agent can systematically search for the optimal action in every state.
That is, it can try an action, determine from the critic if it was incorrect, and if
so take the inverse and try again or else proceed to determine the next optimal
action.

The expression in Equation A.36 is just i, the length of the optimal solution,
multiplied by the expected number of steps required to determine the optimal
action in a given state. Since for zero-initialized Q-learning, we assume ties are
broken by selecting randomly, the number of action-inverse cycles that must be
tried before the optimal action is performed is at most the expected value of a
geometric random variable with parameter P_ (1- P-). Since all but the last cycle
require 2 steps, the expected number of steps required to take one optimal action
is less than -i2e - 1, and the total number of steps required is on average less
than

2 •. (A.37)

The above proof is for prstic = 1.0. For p,,t,, < 1.0, Equation A.36 must be
multiplied by a factor of l/pnic.

Theorem 8: A zero-initialized BB-LEC system that aborts a trial and starts
anew if it fails to solre the task after nq (n, > i) steps has, for a homogeneous
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problem solving task, an expected initial solution time that is linear in i, indepen-

dent of state space size, and bounded from above by the expression

1(* - •i. (A.38)

Proof:
This proof is similar to the last and is based on the idea that by aborting a
trial after n, steps the system can return to the site of previous decisions and
systematically discover the optimal action. While in Theorem 7 the system used
an explicit inverse model, in this theorem the inverse is performed implicitly.

As before, the system must learn the optimal action for the i steps along the
optimal solution path. The expected time needed to learn each optimal step is
just the expected number of times the system must cycle through this inversion
loop multiplied by the expected length of the cycle. In the worst case, the ex-
pected length of the inversion cycle is nq steps. The expected number of cycles
required for each statei along an optimal trajectory is less than the expected value
of a geometric random variable with parameter P_ (I - P.). Thus, the expected
number of steps required to Icarn the steps along an optimal path is less than

(p0 fP=)),* n,i. (A.39)

Again, for p,,itic < 1.0, Equation A.38 must be multiplied by a factor of

Theorem 10: The expected time required for a population of naive (zero-initialized)
Q.learning agents using LB It' to learn the actions along an optimal path decreases
to the minimum required learning time at a rate that is f)(1/n), where n is the
size of the population.

Proof:
Let En denote the expected time required for one of the n zero-initialized Q-
learning agents to solve the task for the first time. Let P,, be the probability
that one of the n agents first solves the task in the kth round. Recall, we assume
agents operate in parallel. After the kth round each agent has taken k steps.
Thus.

E= k P.,k (A.40)
k=o

where o is the length of the optimal solution path.
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In general, each agent behaves independently (because each is zero-initialized
and each performs a random walk), so

Il

P.,k = -(1 - P,)i-1,k (A.41)
i=1

= 1 - (0 - Pik)'. (A.42)

Returning to Equation A.40 we have,

00

E= = o * P.,. + (1 - P.,.) * k - (A.43)
k=o+l

where Pn,k-,o is the probability that one of the n agents first solves the task in the
kth round, given that they have all failed to do so in the oth round. Now, for all

00 00kPl-o _ kPjlo (A.44)

k=o+l k=o"1

SO

En < o * Pn,o + (1 - P,,)* _kP,kl.o (A.45)
k=o+l

The sum in the above equation is constant and independent of n thus, we can
write,

E. :5 o * P, + (1 - Pn,o) * C3  (A.46)

where C3 = 2k-o+l kPj:.,-. Substitu*ing Equation A.42 for P,o allows us to
rewrite this as

En _< C, + C2 * (1 - p1,)n (A.47)

where C, = o and C2 = C3 - o.

In general, for 0 < x < 1, (1 - X)n is Q(1/n). Thus, E,, decreases to the
minimum required learning time at P rate that is fQ(1/n).

':ext, recall that En is the expected time required for an agent to solve the
task initially. To learn the actions along an optimal path may require the agents
to solve the task multiple times, where each solution involves subsequently shorter
and shcrter random walks. In general, the expected solution times for these addi-
tional trials have a form similar to Equation A.47. Thus, in general, the expected
:olution time decreases towards o at a rate that i 11(1/n).

Theorem 11: If a naive i-step Q-learning agent using LBW and a skilled (opti-
mal) role model so'vc identical tasks in parallel and if the naive agent aborts and
restarts the task after failing to solve it in nq steps, then an upper bound on the
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time needed by the naive agent to first solve the task (and learn the actions along

the optimal path) is given by

[;1 n.+i 
(A.48)

Proof:
This follows since after i2 steps the naive agent will have watched the role model
solve the task at least i times, the number of times required for 1-step Q-learning
to propagate credit along the optimal path. Thus, after i2 steps the naive agent
will know how to solve the task from the start state. However, because it may be
in the middle of a trial it may perform a total of [,,2 1n.steps before quitting for
the last time and beginning the final trial. Once the final trial begins, the agent
will solve the task in i steps. Thus, the total number of steps required is at most

[.jn.+i. (A.49)
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